State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	8-6-2012	TY.
API#:	47-009-00102	

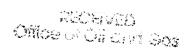
Farm name: Kathy Mayhew BRK 5H	Opera	Operator Well No.: 833621			
LOCATION: Elevation: 1280'	Quadrangle: Bethany				
District: Buffalo		Count	y: Brooke		
Latitude: 11,010	Feet South of 40	Deg. 12	Min. 30	Sec.	
Longitude 5800	Feet West of 80	Deg. 35	Min. 00	Sec.	

Company: Chesapeake Appalachia, L.L.C.

Company: Chesapeake Appalachia, L.L.C.				
Address: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
Oklahoma City, OK 73154-0496	13 3/8"	482'	482'	547 Cu. Ft.
Agent: Eric Gillespie	9 5/8"	1885'	1885'	836 Cu. FT
Inspector: Bill Hendershot	5 1/2"	10247'	10247'	2728 Cu. Ft.
Date Permit Issued: 07/05/2011				
Date Well Work Commenced: 9/29/2011				
Date Well Work Completed: 2/17/2012				
Verbal Plugging:				J
Date Permission granted on:				
Rotary Cable Rig				
Total Vertical Depth (ft): 6009'				
Total Measured Depth (ft): 10247'				
Fresh Water Depth (ft.): 300'				
Salt Water Depth (ft.): 900'				
Is coal being mined in area (N/Y)? N				
Coal Depths (ft.): 434'				
Void(s) encountered (N/Y) Depth(s) Y 420'				

PEN FLOW DATA (II more	than two producing formations pie	ase include additional da	ata on separate sneet)
Producing formation Marcell	us Pay zone de	epth (ft) 6,781' - 10,114'	
Gas: Initial open flow	MCF/d Oil: Initial open flow	Bbl/d	
Final open flow 578*	_MCF/d Final open flow 111	Bbl/d	
Time of open flow between	een initial and final tests 66	Hours * Calculated	RECEIVED
Static rock Pressure 3,895*	psig (surface pressure) after	Hours	Office of Official Gas
Second producing formation	n Pay zone dep	th (ft)	SEP 0.5 201?
Gas: Initial open flow	MCF/d Oil: Initial open flow	Bbl/d	SEP (FS ZUI)
Final open flow	MCF/d Final open flow	Bbl/d	was to a continue mands and
Time of open flow between	een initial and final tests	Hours	WV Depariment of
Static rock Pressure	psig (surface pressure) after	Hours	Environmental Profestor

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

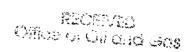

Marlene Ix Relians
Signature

9-4-3012 Date

Were core samples taken? Yes	_ No_N	Were cuttings caught durin	g drilling? YesNo_Y	
Were Electrical, Mechanical or Geophy	ysical logs recorded on this	well? If yes, please list		
NOTE: IN THE AREA BELOW FRACTURING OR STIMULATIN DETAILED GEOLOGICAL REC COAL ENCOUNTERED BY THE	G, PHYSICAL CHANGE CORD OF THE TOPS A	, ETC. 2). THE WELL LO ND BOTTOMS OF ALL	G WHICH IS A SYSTEMA? FORMATIONS, INCLUDI	ΓIC
Perforated Intervals, Fracturing, or Stir	mulating:			
(See Attached)				
Plug Back Details Including Plug Type	e and Depth(s):			
Formations Encountered: Surface:	Top Dept	h/	Bottom Depth	
(See Attached)				
· · · · · · · · · · · · · · · · · · ·				
			,	
			RECEIVED	
			Office or the and 5	-03
			000 or 2042	

Well Number and Name: 833621 Kathy Mayhew BRK 5H

PERFO	RATION RE	CORD	STIMULATION RECORD				D			
	Interval P	erforated			Fluid		Propping Agent		Average	
Date	From	То	Date	Interval	Treated	Туре	Amount	Туре	Amount	Injection
1/25/2012	9,911	10,114	2/10/2012	9,911	10,114	Sik wtr	5,593		270,751	79
2/10/2012	9,464	9,848	2/11/2012	9,464	9,848	Sik wtr	10,563	Sand	573,803	72
2/11/2012	9,017	9,394	2/12/2012	9,017	9,394	Sik wtr	9,700	Sand	570,000	86
2/12/2012	8,570	8,954	2/13/2012	8,570	8,954	Slk wtr	10,209	Sand	571,046	85
2/13/2012	8,123	8,507	2/14/2012	8,123	8,507	Slk wtr	9,500	Sand	570,955	86
2/14/2012	7,675	8,060	2/15/2012	7,675	8,060	Slk wtr	9,394	Sand	572,715	88
2/15/2012	7,228	7,612	2/16/2012	7,228	7,612	Slk wtr	9,226	Sand	574,481	86
2/16/2012	6,781	7,165	2/17/2012	6,781	7,165	Sik wtr	9,759	Sand	569,223	86
					ļ					
			<u> </u>		<u> </u>	<u> </u>	L			


SEP 0 5 2012

WV Department of Environmental Protection

LATERAL SIDETRACK WELLBORE (no vertical pilot hole associated with this well)

Maximum TVD of wellbore: 6009 ft TVD @ 7116 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
LS/SS	0	0	434	434
PITTSBURG COAL	434	434	446	446
SS	446	446	1440	1440
BIG LIME (LS)	1440	1440	1490	1490
BIG INJUN (SS)	1490	1490	1740	1740
SHALE	1740	1740	5962	5826
GENESEO (SH)	5962	5826	5984	5842
TULLY (LS)	5984	5842	6069	5895
HAMILTON (SH)	6069	5895	6550	5981
MARCELLUS (SH)	6550	5981		
TD OF LATERAL			10247	5974

SEP 9 5 2012

WV Department of Environmental Protection

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	8-6-2012	T
API#:	47-009-00103	

CATION: Elevation: 1270'		Quadrangle: Bethany WV				
District: Buffalo						
Latitude: 11000	Feet South of 40	Deg.	County: Brook			
Longitude 5820'	Feet West of 80					
Company: Chesape	ake Appalachia, L.L.C.					
Address: P.O. Box	18496		Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
Oklahoma City, OK 7	3154-0496		20"	109'	109'	Driven
Agent: Eric Gillesp	ie		13 3/8"	508'	508'	421 Cu. Ft.
Inspector: Bill He	ndershot		9 5/8"	1897'	1897'	825 Cu. Ft.
Date Permit Issued:	7/5/2011		5 1/2"	10751'	10751'	2711 Cu. Ft.
Date Well Work Con	menced: 9/20/2011					
Date Well Work Con	pleted: 2/18/2012					
Verbal Plugging:						
Date Permission gran	ted on:					
Rotary Cable	Rig 🗌					
Total Vertical Dept	n (ft): 6073'					
Total Measured Dep	th (ft): 10751'					
Fresh Water Depth (ft.): 300'					
Salt Water Depth (ft	.): 900'					
Is coal being mined in	area (N/Y)? N					
Coal Depths (ft.): 434	1'					
Void(s) encountered (N/Y) Depth(s) Y 425'					
PEN FLOW DATA (If m Producing formation Ma Gas: Initial open flow	ore than two producing reellus MCF/d Oil: Initia	Pay z	one depth (ft) <u></u>		ata on separate si	neet)
Final open flow 1,573		pen flow	319 Bb	l/d	RE	CHVED
	tween initial and final to			* Calculated	Office o	f Oil and Go
Static rock Pressure 3,940	5* psig (surface pres	ssure) aft	erHou	rs		
Second producing forma	tion	Pay zon	e depth (ft)		SEF	0 5 2012
Gas: Initial open flow MCF/d Oil: Initial open flow Bbl/d Final open flow MCF/d Final open flow Bbl/d				WV Do	perment of	
	tween initial and final to	ests	Hours		Environme	unton Pro

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Marlene Williams
Signature

Were core samples taken? YesNo_N	Were cuttings caught during drilling? Yes Y NoNo
Were Electrical, Mechanical or Geophysical logs re LWD GR from 5380-10751' MD.	ecorded on this well? If yes, please list
FRACTURING OR STIMULATING, PHYSIC	HE FOLLOWING: 1). DETAILS OF PERFORATED INTERVALS, CAL CHANGE, ETC. 2). THE WELL LOG WHICH IS A SYSTEMATIC THE TOPS AND BOTTOMS OF ALL FORMATIONS, INCLUDING BE FROM SURFACE TO TOTAL DEPTH.
Perforated Intervals, Fracturing, or Stimulating:	
(See Attached)	
Plug Back Details Including Plug Type and Depth(s	s):
Formations Encountered: Surface:	Top Depth / Bottom Depth
(See Attached)	
	RECEIVED
	Office of Oil and Gas
	SEP 9 \$ 2012

WV Department of Environmental Plate from

Well Number and Name: 833622 Kathy Mayhew BRK 8H

PERFORATION RECORD		STIMULATION RECORD								
	Interval Perforated				Fit		luid	Proppi	Propping Agent	
Date	From	To	Date	Interval	Treated	Туре	Amount	Туре	Amount	Average Injection
1/25/2012	10,236	10,619	2/10/2012	10,236		Sik wtr	9,471	Sand	572,677	90
2/10/2012	9,759	10,143	2/11/2012	9,759		Sik wtr	9,880	Sand	572,698	86
2/11/2012	9,283	9,666	2/12/2012	9,283	9,666		12,220	Sand	571,584	85
2/12/2012	8,807	9,190	2/13/2012	8,807	9,190	Slk wtr	9,267	Sand	572,028	85
2/13/2012	8,330	8,714	2/14/2012	8,330		Sik wtr	9,526	Sand	572,272	86
2/14/2012	7,854	8,237	2/15/2012	7,854		Sik wtr	9,398	Sand	574,873	86
2/15/2012	7,378	7,761	2/16/2012	7,378	7,761	Slk wtr	9,738	Sand	565,922	85
2/16/2012	6,901	7,285	2/17/2012	6,901	7,285	Sik wtr	9,356	Sand	571,670	84
2/17/2012	6,425	6,808	2/18/2012	6,425	6,808	Slk wtr	9,278	Sand	574,110	85
			ļ				<u> </u>			
			L							

RECEIVED Office of Oil and Gas

SEP 0 5 2012

Wy Department of Environmental Protection

LATERAL SIDETRACK WELLBORE (no vertical pilot hole associated with this well)

Maximum TVD of wellbore: 6073 ft TVD @ 10751 ft MD

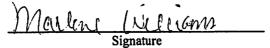
Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
LS/SS	0	0	434	434
PITTSBURG COAL	434	434	446	446
SS	446	446	1440	1440
BIG LIME (LS)	1440	1440	1490	1490
BIG INJUN (SS)	1490	1490	1740	1740
SHALE	1740	1740	5845	5815
GENESEO (SH)	5845	5815	5863	5829
TULLY (LS)	5863	5829	5950	5888
HAMILTON (SH)	5950	5888	6208	5979
MARCELLUS (SH)	6208	5979		
TD OF LATERAL			10751	6073

RECEIVED
Office of Oil and Gas

SEP 9 5 2012

WV Department of Environmental Protection

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work


DATE:	10-2-2012	J
API#:	47-009-00109	

Farm name: Mike Ryniawec BRK 8H			Operator Well No.: 833799			
LOCATION: Elevation: 1147		Quad	rangle: Bethany	wv		
District: Buffalo		Coun	ty: Brooke			
Latitude: 7270'	Feet South of 40	Deg. 12	Min. 30	Sec.		
Longitude 8430	Feet West of 80	Deg. 35	Min. 00	Sec.		

Chesapeake Appalachia, L.L.C.				
Address: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
Oklahoma City, OK 73154-0496	20"	100'	100'	202 Cu. Ft.
Agent: Eric Gillespie	13 3/8"	365'	365'	112 Cu. Ft.
Inspector: Bill Hendershot	9 5/8"	1854'	1854'	847 Cu. Ft.
Date Permit Issued: 11-22-2011	5 1/2"	11081'	11081'	2638 Cu. Ft.
Date Well Work Commenced: 2-10-2012				
Date Well Work Completed: 7-3-2012				
Verbal Plugging:				
Date Permission granted on:				
Rotary Cable Rig				
Total Vertical Depth (ft): 5977'				
Total Measured Depth (ft): 11,084'				
Fresh Water Depth (ft.): 60', 320'				
Salt Water Depth (ft.): 1223'				_
Is coal being mined in area (N/Y)? N				
Coal Depths (ft.): 330'			·	
Void(s) encountered (N/Y) Depth(s) Y 330'				

OPEN FLOW DATA (If more t	han two producing formations ple		data on separate sheet)
Producing formation Marcelle	Pay zone d	lepth (ft) 6,130°-10,953°	
Gas: Initial open flow	_MCF/d Oil: Initial open flow_	Bbl/d	
Final open flow 1,922*	_MCF/d Final open flow 286	Bbl/d	
Time of open flow between	en initial and final tests 53	Hours *Calculated	l
Static rock Pressure 3,884*	psig (surface pressure) after	Hours	In the bould along
Second producing formation	Pay zone dep	oth (ft)	
Gas: Initial open flow	_MCF/d Oil: Initial open flow_	Bbl/d	OCT 30
Final open flow	_MCF/d Final open flow	Bbl/d	00T 0 H 100
Time of open flow between	en initial and final tests	Hours	
Static rock Pressure	psig (surface pressure) after	Hours	Environment

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Were core samples taken? Yes	_No_X W	ere cuttings caught during drillir	ng? YesNo_^
Were Electrical, Mechanical or Geophy	ysical logs recorded on this well	1? If yes, please list LWD GR fro	om 5,400' MD -10,958' MD
NOTE: IN THE AREA BELOV FRACTURING OR STIMULATIN DETAILED GEOLOGICAL REC COAL ENCOUNTERED BY THE	G, PHYSICAL CHANGE, ET ORD OF THE TOPS AND	TC. 2). THE WELL LOG WH • BOTTOMS OF ALL FOR	IICH IS A SYSTEMATIC
Perforated Intervals, Fracturing, or Stir	mulating:		
(See attached)			
Plug Back Details Including Plug Typ	e and Depth(s):		
Formations Encountered: Surface:	Top Depth	1	Bottom Depth
(See attached)			
			A Bank of the state of the stat
			** ** The state of
		Envi	WHI rooms of the second

Jn

Well Number and Name: 833799 Mike Ryniawec BRK 8H

PERFO	RATION RE	CORD	STIMULATION RECORD			D				
	Interval P	erforated				F	luid		ing Agent	Average
Date	From	То	Date	Interval	Treated	Туре	Amount	Туре	Amount	Injection
6/13/2012	10,403	10,953	6/27/2012	10,403		Sik wtr	12,344	Sand	611,640	80.1
6/27/2012	9,792	10,341	6/28/2012	9,792		Slk wtr	12,078	Sand	608,100	80
6/28/2012	9,181	9,733	6/28/2012	9,181			12,463	Sand	610,520	80
6/28/2012	8,571	9,122	6/29/2012	8,571			12,325	Sand	611,880	80
6/29/2012	7,961	8,512	6/29/2012	7,961	8,512		12,880	Sand	615,120	80
6/29/2012	7,351	7,902	6/29/2012	7,351	7,902	Slk wtr	13,012	Sand	609,420	79.5
7/3/2012	6,740	7,292	7/3/2012	6,740	7,292	Sik wtr	12,601	Sand	612,200	79.6
7/3/2012	6,130	6,681	7/3/2012	6,130	6,681	Slk wtr	12,577	Sand	611,700	79.9
							<u> </u>			
							<u> </u>			
								<u> </u>		
							<u> </u>			
									<u> </u>	

Enter les tons

JUT 25 1 1

LATERAL SIDETRACK WELLBORE (no vertical pilot hole associated with this well)

Maximum TVD of wellbore: 5976 ft TVD @ 11084 ft MD

. • . •

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
SS	0	0	330	330
COAL	330	330	338	338
SS	338	338	750	750
LS/SS	750	750	796	796
SS	796	796	1270	1270
SS/LS	1270	1270	1300	1300
LS	1300	1300	1420	1420
SS/LS	1420	142	1470	1470
BIG INJUN	1470	1470	1674	1674
SH	1674	1674	5770	5770
GENESEO (SH)	5751	5727	5769	5741
TULLY (LS)	5769	5741	5846	5799
HAMILTON (SH)	5846	5799	6026	5892
MARCELLUS (SH)	6026	5892		
TD OF LATERAL			11084	5977

OCT 03 1572

Sand Bank of Sand

Environde de la colon

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

API#:	47-009-00115	
DATE:	10-15-2012	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

13

OCATION: Elevation: 1205'	Quadrangle:	247-Bethany		
District: Buffalo Latitude: 8470' Feet South of 40 Deg	County: Broom	n. ⁰⁰ Sec		
	<i></i>	1. 30 Sec		
		-		
Company: Chesapeake Appalachia, L.L.C.				
Address: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
Oklahoma City, OK 73154-0496	13 3/8"	326'	326'	426 Cu. Ft.
Agent: Eric Gillespie	9 5/8"	1719'	1719	797 Cu. Ft.
Inspector: Bill Hendershot	5 1/2"	11607'	11607'	2513 Cu. Ft.
Date Permit Issued: 1-18-2012				
Date Well Work Commenced: 4-5-2012				
Date Well Work Completed: 7-15-2012				
Verbal Plugging:				
Date Permission granted on:			<u> </u>	
Rotary Cable Rig				
Total Vertical Depth (ft): 5897'				
Total Measured Depth (ft): 11612'				
Fresh Water Depth (ft.): 71', 248'				
Salt Water Depth (ft.): 1220'				
Is coal being mined in area (N/Y)? N				
Coal Depths (ft.): 305'				
Void(s) encountered (N/Y) Depth(s) Y 305'				
OPEN FLOW DATA (If more than two producing formation)	ations please incl	lude additional d	lata on separate	sheet)
	y zone depth (ft)			<i>,</i>
Gas: Initial open flowMCF/d Oil: Initial open		Bbl/d		
Final open flow 1.628* MCF/d Final open f		3bl/d		
Time of open flow between initial and final tests 3		rs *Calculated		er.
Static rock Pressure 3.790* psig (surface pressure)) aπerHo	ours	ger	or con
Second producing formationPay	zone depth (ft)_		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Gas: Initial open flowMCF/d Oil: Initial open	n flow	Bbl/d		£%.
Final open flow MCF/d Final open f				
Time of open flow between initial and final tests_ Static rock Pressurepsig (surface pressure)		ours		•
I certify under penalty of law that I have personally examine	ed and am famili	ar with the info	mation submitte	ed on this docum
all the attachments and that, based on my inquiry of those in	ndividuals immed	diately responsib	ole for obtaining	the information
that the information is true, accurate, and complete.				

Signature

Were core samples taken? Yes?	No_N	Were cuttings caught during dri	lling? Yes <u>Y</u>	. No
Were Electrical, Mechanical or Geophysi GR MWD FROM 5000' TO 11549'	cal logs recorded on this w	ell? If yes, please list		
NOTE: IN THE AREA BELOW FRACTURING OR STIMULATING, DETAILED GEOLOGICAL RECOI COAL ENCOUNTERED BY THE W	PHYSICAL CHANGE, I RD OF THE TOPS AN	ETC. 2). THE WELL LOG W D BOTTOMS OF ALL FO	HICH IS A SYS	TEMATIC
Perforated Intervals, Fracturing, or Stimu	lating:			
(See attached)				
·				
Plug Back Details Including Plug Type a	nd Depth(s):			
	-			
Formations Encountered: Surface:	Top Depth	/	Bottom De	e <u>pth</u>
(See attached)				
		<u> </u>		
			A ^E	
			46	
			<u> </u>	· · · · · · · · · · · · · · · · · · ·
				and the second s

LATERAL SIDETRACK WELLBORE (no pilot hole associated with this well)

Maximum TVD of wellbore: 5897 ft TVD @ 11549 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
SS/LS	0	0	305	305
PITTSBURG COAL	305	305	311	311
SS/LS	311	311	628	628
SHALE	628	628	838	838
SS/SH	838	838	1375	1375
BIG INJUN SS	1375	1375	1575	1575
SHALE	1575	1575	5731	5684
GENESEO (SH)	5731	5684	5749	5696
TULLY (LS)	5749	5696	6074	5853
MARCELLUS (SH)	6074	5853		
TD OF LATERAL			11549	5831

Well Number and Name: 834168 Alan H Degarmo BRK 3H

PERFO	RATION RE	CORD	STIMULATION RECORD			D	. •			
	Interval P	erforated				F	luid	Propp	ing Agent	Average
Date	Frem	То	Date	Interval	Treated	Type	Amount	Туре	Amount	Injection
6/21/2012	10,884	11,477	7/12/2012	10,884	11,477	Sik wtr	12,311	Sand	664,880	85
7/12/2012	10,208	10,801	7/12/2012	10,208	10,801	Sik wtr	12,671	Sand	664,900	85
7/12/2012	9,532	10,124	7/13/2012	9,532	10,124	Slk wtr	12,491	Sand	665,520	83
7/13/2012	8,855	9,448	7/13/2012	8,855	9,448	Slk wtr	12,493	Sand	665,060	84
7/13/2012	8,179	8,771	7/14/2012	8,179	8,771	Sik wtr	12,126	Sand	666,040	86
7/14/2012	7,503	8,095	7/14/2012	7,503	8,095	Sik wtr	12,130	Sand	665,920	84
7/14/2012	6,826	7,419	7/14/2012	6,826	7,419	Sik wtr	11,947	Sand	684,060	86
7/14/2012	6,150	6,742	7/15/2012	6,150	6,742	Sik wtr	12,120	Sand	676,600	85
			<u> </u>							
							ļ			
						<u> </u>				
			L							
							_		!	
			1 1		ŀ		I	I	Į.	I

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	10-18-2012	T
API #:	47-009-00119	U

Farm name: John Harwatt BRK 8H		Operator Wel	II No.: 0341/1		
LOCATION: Elevation: 1135'		Quadrangle:	247-Bethany		
District: Buffalo		County: Broo	ke		
Latitude: 2570 Feet Sout	th of 40 Deg. 1	Mir	n. 30 Sec	c.	
Longitude 10210' Feet Wes	t of <u>80</u> Deg. <u>3</u>	Mir.	ı. <u>00 </u>	c.	
Company: Chesapeake Appalachi	ia, L.L.C.				
Address: P.O. Box 18496		Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
Oklahoma City, OK 73154-0496		13 3/8"	391'	391'	477 Cu. Ft.
Agent: Eric Gillespie		9 5/8"	1799'	1799'	818 Cu. Ft.
Inspector: Bill Hendershot		5 1/2"	11184'	11184'	2588 Cu. Ft.
Date Permit Issued: 1-23-2012					
Date Well Work Commenced: 3-	1-2012				
Date Well Work Completed: 7	-18-2012				
Verbal Plugging:					
Date Permission granted on:					
Rotary Cable	Rig 🗌				
Total Vertical Depth (ft): 5999'					
Total Measured Depth (ft): 11190)'				0
Fresh Water Depth (ft.): 70', 300					
Salt Water Depth (ft.): 1190'					
Is coal being mined in area (N/Y)?	N				
Coal Depths (ft.): 318'					
Void(s) encountered (N/Y) Depth(s) N				
OPEN FLOW DATA (If more than two producing formation Marcellus Gas: Initial open flow MCF/d Final open flow 909* MCF/d		one depth (ft)	8,199'-11,048'	ata on separate s	heet)
Time of open flow between initial	•	Hours			
	urface pressure) afte		Jaioaiaioa		
Second producing formation	Da.,	a dameh (A)			•
	Oil: Initial open flo	e depth (ft)	bl/d		
Final open flow MCF/d	•		ol/d		
Time of open flow between initial	•				

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Marlan Williams.
Signature

Static rock Pressure _____psig (surface pressure) after ____

Were core samples taken? Yes	No_X	Were cuttings caugh	t during drilling? Yes_	No_X
Were Electrical, Mechanical or Geop	physical logs recorded or	n this well? If yes, please lis	st GR MWD from 530	3'-11135' MD
NOTE: IN THE AREA BELO FRACTURING OR STIMULAT DETAILED GEOLOGICAL RI COAL ENCOUNTERED BY TH	ING, PHYSICAL CHA ECORD OF THE TO	ANGE, ETC. 2). THE WEI	LL LOG WHICH IS A F ALL FORMATIONS	SYSTEMATIC
Perforated Intervals, Fracturing, or S	Stimulating:			
(See attached)				
Plug Back Details Including Plug Ty	ype and Depth(s):			
Formations Encountered: Surface:	Top	Depth /	Botto	m Depth
(See attached)				
		······································		
				· · · · · · · · · · · · · · · · · · ·
			·	
				•
				· · · · · · · · · · · · · · · · · · ·

. . . .

Weil Number and Name: 834171 John Harwatt BRK 8H

PERFO	RATION RE	CORD				STIMULAT	10N RECOR	D		
	Interval P	erforated				F	luid		ing Agent	Average
Date	From	То	Date	Interval	Treated	Type	Amount	Туре	Amount	Injection
6/24/2012	10,509	11,048	7/13/2012	10,509	11,048	Slk wtr	12,813	Sand	626,260	80
7/13/2012	9,893	10,432	7/13/2012	9,893	10,432	Slk wtr	12,478	Sand	629,260	79
7/13/2012	9,278	9,816	7/14/2012	9,278	9,816	Sik wtr	12,560	Sand	625,500	78
7/14/2012	8,662	9,201	7/14/2012	8,662	9,201	Sik wtr	12,729	Sand	623,000	80
7/14/2012	8,046	8,585	7/15/2012	8,046	8,585	Sik wtr	12,766	Sand	622,460	80
7/15/2012	7,430	7,964	7/15/2012		7,964	Sik wtr	12,387	Sand	620,690	80
7/15/2012	6,815	7,349	7/18/2012	6,815	7,349	Slk wtr	12,418	Sand	625,500	80
7/18/2012	6,199	6,740	7/18/2012	6,199	6,740	Slk wtr	14,226	Sand	627,240	80
		L								

LATERAL SIDETRACK WELLBORE (no vertical pilot hole associated with this well)

Maximum TVD of wellbore: 5999 ft TVD @ 11190 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
LS/SS	0	0	318	318
PITTSBURG COAL	318	318	326	326
LS/SS	326	326	490	490
SH/SS	490	490	700	700
SS	700	700	1030	1030
SS/LS	1030	1030	1090	1090
SS	1090	1090	1360	1360
LS	1360	1360	1390	1390
SS/LS	1390	1390	1420	1420
SS/SH	1420	1420	1480	1480
BIG INJUN (SS)	1480	1480	1636	1636
SHALE	1636	1636	5810	5784
GENESEO (SH)	5810	5784	5828	5798
TULLY (LS)	5828	5798	5903	5853
HAMILTON (SH)	5903	5853	6112	5955
MARCELLUS (SH)	6112	5955		
TD OF LATERAL			11135	5998

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE: 2012-10-11 Amended
API #: 4701705958

Farm name: John R. Davies et al		I No.: 513369		
LOCATION: Elevation: 1130	_ Quadrangle: _			
District: Unknown	County: Doc			
		ıSe ı. Se		
	,,	··	•	
Company: EQT Production Company				
Address: EQT Plaza, Suite 1700	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
625 Liberty Avenue, Pittsburgh, PA 15222	20	40	40	45.22
Agent: Cecil Ray	13 3/8	1,111	1,111	873.3
Inspector: David Scrange	9 5/8	3,125	3,125	1,265.6
Date Permit Issued: 2010-06-10	5 1/2	9,643	9,643	1,296.82
Date Well Work Commenced: 2010-07-13				
Date Well Work Completed: 2011-04-22				
Verbal Plugging: N/A				
Date Permission granted on: N/A				
Rotary Cable Rig V				
Total Vertical Depth (ft): 6,647.93				
Total Measured Depth (ft): 9,647				
Fresh Water Depth (ft.): FW @ 66,157,268,343				
Salt Water Depth (ft.): None Encountered				
Is coal being mined in area (N/Y)? N				
Coal Depths (ft.): 60, 205, 403, 675				
Void(s) encountered (N/Y) Depth(s) N				
OPEN FLOW DATA (If more than two producing formation Producing formation Marcellus Pay Gas: Initial open flow MCF/d Oil: Initial open Final open flow 8,832 MCF/d Final open flo Time of open flow between initial and final tests Static rock Pressure 850 psig (surface pressure) a	zone depth (ft) flowE wBHour ofter Hou	bbl/d bl/d s	•	·
Second producing formation Pay ze	one depth (ft)			diffe Gre
Gas: Initial open flowMCF/d Oil: Initial open	flowE	bl/d	W.C.	(O)11
Final open flow MCF/d Final open flo	wB	bl/d s	Office	21012
Static rock Pressure psig (surface pressure) a	ifter Hou	ırs	OC	T'A C'
Second producing formation Pay zero. Gas: Initial open flow MCF/d Oil: Initial open flow MCF/d Final open flow MCF/d Final open flow psig (surface pressure) at certify under penalty of law that I have personally examined all the attachments and that, based on my inquiry of those indicates that the information is true, accurate, and complete.	and am familia	r with the infor ately responsib	mation submitted	de this document and the finformation I belie
Mile Bute	1		12-10-11	
Signature	· · · · · · · · · · · · · · · · · · ·		Date	

Were core samples taken? Yes X	No We	re cuttings caught dur	ing drilling? YesXN	o
Were Electrical, Mechanical or Geophysi	ical logs recorded on this well?	If yes, please list G	eophysical	
NOTE: IN THE AREA BELOW FRACTURING OR STIMULATING DETAILED GEOLOGICAL RECO COAL ENCOUNTERED BY THE W	, PHYSICAL CHANGE, ET RD OF THE TOPS AND	C. 2). THE WELL L BOTTOMS OF AL	OG WHICH IS A SYSTE L FORMATIONS, INCI	EMATIC
Perforated Intervals, Fracturing, or Stimu	lating:			
See Attachment				
Plug Back Details Including Plug Type a	nd Depth(s):			
				
Formations Encountered: Surface:	Top Depth	/	Bottom Depth	,
Sand / 0 / 55 / 55 Shale / 55 / 60	/5 - Coal / 60 / 62 / 2	Sand / 62 / 100 / 3	8 Red Rock / 100 / 10	08/8
Shale / 108 / 205 / 97 - Coal / 205 / 210	/5 - Sand / 210 / 240 / 30 -	Red Rock / 240 / 250	/ 10 - Red Rock / 250 / 26	5 / 15
Sand / 265 / 280 / 15 Red Rock / 2	280 / 290 / 10 - Sand and S	Shale / 290 / 330 / 4	0 - Red Rock / 330 / 35	0/20
Sand and Shale / 350 / 403 / 53 - Co	oal / 403 / 406 / 3 - Sand a	nd Shale / 406 / 675	5 / 269 - Coal / 675 / 67	7/2 -
Sand and Shale / 677 / 983 / 306 SI	nale / 750 / 840 / 90 Red	Rock / 840 / 860 / 2	20 - Sand / 860 / 1,070	/210
Red Rock / 1,070 / 1,085 / 15 - Sand / 1,085 /	3,222 / 2,137 - WARREN / 3,222.0	06/3,304.96/82.9 — SF	PEECHLEY / 3,304.96 / 3,988.6	/ 683.64
SALLTOWN B / 3,988.6 / 4,175.98 / 187.38	- BRADFORD / 4,175.98 / 4,4	150.42 / 274.44 - RIL	.EY / 4,450.42 / 4,887.17 / 43	36.75 -
BENSON / 4,887.17 / 5,140.73 / 253.56	ALEXANDER / 5,140.73 / 6,249	.28 / 1,108.55 - SON	YEA / 6,249.28 / 6,483.95 / 2	234.67 -
AIDDLESEX / 6,483.95 / 6,536.19 / 52.24	4 - GENESSEE / 6,536.19 / 6	6,613.69 / 77.5 — GE	NESEO / 6,613.69 / 6,642.	8 / 29.11
ULLY / 6,642.8 / 6,667.05 / 24.25 HAMIL	.TON / 6,667.05 / 6,682.09 / 15.04	4 - MARCELLUS BLK	SHALE / 6,682.09 / 6,697,36 /	/ 15.27
			- C	(AP)
			300	
			0.3 10%	
			Out of the state	anii .
			THE COUNTY OF THE PARTY OF THE	ON SPECIAL STREET
			THE TOTAL	

ECT VIB-33	ទិក្សាមុខវិទ្ធិក	भाड़ालीकाम	VV	fremment -	<u>-</u> ទ្ធកាលកា
Stage	Formation	Frac Type	}		
1A	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
2/28/2011	9378 - 9620		7,848.00	8,456.00	5 Min: 4035
					10 Min: 381
Avg Rate	Wax Press PSI	ISIP	Frac Gradient		15 Min: 366
41.20	9,083.00	4,936.00	9573		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
2,800.00	5,238.00		4,000.00		
Stage	Formation	Frac Type			Marketti, M. S.
1B	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	IP Detail
2/28/2011	9299 - 9401		5,953.00	8,118.00	Min: 3707
				1	0 Min: 340
Avg Rate	Max Press PSI	ISIP	Frac Gradient	ESS:	5 Min: 322
93.60	9,065.00	5,130.00	1.2		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
402,670.00	10,407.00		2,000.00		
Stage	Formation	Frac Type			April Kell Lagr
2	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	IP Detail
3/1/2011	8999 - 9241		5,856.00	7,543.00 5	
				10).Min: 4423
Avg Rate	Max Press PSI	ISIP	Frac Gradient	MEV.	5 Min: 4423 5 Min: 4175
100.30	7.907.00	5,269.00	1.22		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
464,210.00	9,945.00		2,000.00		

Office of Oil's Ose

EQF WRES	ยะที่สมุเมีย	vijaepment	77 91	riseiment.	Sugmercy
Stage	Formation	Frac Type			
3	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Ps	SIP Detail
3/1/2011	8778 - 9020		5,757.00	7,111.00	5 Min: 4596
		ž			10 Min: 4774
Avg Rate	Wax Press PSI	ISIP	Frac Gradient		15 Min: 4456
98.20	8,632.00	5,469.00	1.26		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
398,650.00	9,929.00		2,000.00		
Stage	Formation	Frac Type	the second		
4	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
3/1/2011	6697 - 7182		6,697.00	7,182.00	5 Min: 4790
					10 Min: 4514
Avg Rate	Wax Press PSI	ISIP	Frac Gradient		15 Min: 4299
100.50	8,609.00	5,576.00	1.27		
Sand Proppant	Water-bb!	SCF N2	Acid-Gal		
396,860.00	9,983.00		2,000.00		
Stage	Formation	Frac Type	7.000		
5	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
3/1/2011	8099 - 8341		6,483.00	7,644.00	5 Min: 4081
Avg Rate	Max Press PSI	ISIP I	Frac Gradient		10 Min: 3662 15 Min: 3401
97.90	8,241.00	4,669.00	0		10 Mill. 3401
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
405,050.00	9,788.00		2,000.00		

Miconarda de la compositiona della compositiona della compositiona della compositiona della compositiona del

EOT Wiese	e ompletion e	Airenmen)))/p/ii	ไรษณูเสอกไ	Summany
Stage	Formation	Frac Type	· · · · · · · · · · · · · · · · · · ·		
6	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
3/2/2011	7799 - 8041		5,746.00	7,614.00	5 Min: 4179
e					10 Min: 4769
Avg Rate	Wax Press PSI	ISIP	Frac Gradient		15 Min: 4410
94.16	8,672.00	5,592.00	1.27		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
397,500.00	10,907.00		2,000.00		
19585		7897			100
Stage	Formation	Frac Type			
7	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
3/2/2011	7499 - 7741		5,542.00	6,844.00	5 Min: 4147
					10 Min: 3859
Aug Dete	Wax Press PSI	ICID	Frac Gradient		15 Min: 3789
Avg Rate					15 Mill. 3769
89.00	8,314.00	5,259.00	1.22		
Sand Proppant	Water-bbl	SCF N2			
399,380.00	9,892.00	A	2,000.00		
					Barrer Learning
Stage	Formation	Frac Type			
8	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
3/2/2011	7199 - 7441		5,727.00	6,976.00	5 Min: 3480
					10 Min: 3232
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 3092
92.80	7,206.00	4,532.00	1.11		
Sand Proppant	Water-bb!	SCF N2	Acid-Gal		
403,200.00	9,567.00		2,000.00		
		and show that the same			
				Bul-	1002

Michael Care

Date API# November 5, 2012 47-049-01572

State of West Virginia Division of Environmental Protection Section of Oil and Gas Well Operator's Report of Well Work

Farm Name:	Cor	nsolidation Coal Co.		Operator W	/ell l	No.: _	E-0658	3	
LOCATION:	Elevation: District: Latitude:	1227' Lincoln 10,190' feet	South of	Quadrangle County: 39 DE		30	Shinns Mario MIN.		
	Longitude:	4,715' feet	West of	80 DE	G.		MIN.	30 SEC.	
				Casing Tubing S		Used in	Drilling	Left in Well	Cement Fill Up Cu. Ft.
Company:	Linn Operating, 480 Industrial F			13 3/8		1	9'	19'	
	Jane Lew, WV	26378		7"		11	62'	1162'	C.T.S.
Agent: Inspector:	***	Gary Beall Terry Urban		4 1/2"		40	80'	4017'	190 sks
Permit Issued	<u> </u>	1/27/2005				1			
Well Work Co		December 6, 20	05						
Well Work Co Verbal Pluggi	mpleted:	December 20, 20						,	
Permission gr Rotary X	ranted on:								
Total Depth (1		4017							
Fresh Water I		None		·		<u> </u>			
Salt Water De		None		•					
Is coal being	mined in area (Y (ft) 335'-338', 4								
OPEN FLOW									
				Pa	y Z	one			
Producing F	ormation	See Treatment		De	pth	(ft)	19	973' - 3931'	
Gas: Initial O	pen Flow	Initial and final tests	MCF/d MCF/d	i Oii	l: In	itial Ope	n Flow n Flow Hours		Bbl/d Bbl/d
Static rock pro	essure	psig su	rface pres	sure after					
			p. 00	Pa	y Z	one			
Second Prod	lucing Formatio	n		De	epth	(ft) _			
Time of or	pen Flow pen flow between	initial and final tests			F		n Flow n Flow Hours Hours		Bbl/d Bbl/d
STIMULATING	, PHYSICAL CHAI	M PUT THE FOLLOWIN NGE, ETC. 2.) THE WE COAL ENCOUNTERED	LL LOG W	/HICH IS SYS	RFC	DRATED MATIC D	INTERVA ETAILED	LS, FRACTURIN GEOLOGICAL R	G OR ECORD OF
		CEIVED	For:	Linn Op	era	tingəln	c.		
	Office	of Oil-& Gas	By:		<u> </u>	m			
	NO	V 0 5 2012	Date:		1.4	5-12	2		

WV Department of Environmental Protection Form IV-35 (Reverse) Well#

E-0658 47-049-01572

Details Of Perforated Intervals, Fracturing, or Stimulating Physical Change Etc.

Stage 1	3931' - 3755' 2700#'s ATP, 31 bpm, 20,000#'s 30/50 mesh sand - Balltown
Stage 2	2879' - 2874' 2450#'s ATP, 31 bpm, 17,500#'s 30/60 mesh sand - 5th
Stage 3	2743' - 2738' 3250#'s ATP, 20 bpm, 7,500#'s 30/50 mesh sand - Gordon
Stage 4	2495' - 2490' 3500#'s ATP, 20 bpm, 7,500#'s 30/50 mesh sand - 30 ft
Stage 5	2427' - 2410' 3600#'s ATP, 20 bpm, 7,500#'s 30/50 mesh sand - 50 ft
Stage 6	1973' - 1965' 3650#'s ATP, 26 bpm, 10,000#'s 30/50 mesh sand - Pocono
Stage 7	1938' - 1896' 3000#'s ATP, 27 bpm, 16,600#'s 30/50 mesh sand - Big Injun

Formation color hard or soft	Top Fee Bot	tom Feet	Remarks
Dirt & Gob	0	70	
Sand Stone	70	175	
Send/Shale	175	230	
Sand	230	335	
Sewickley Coal	335	338	
Send/Shale	338	460	
Pitte Coal	460	470	
Sand/Shate	470	510	
Send	510	540	
Sand/Shale	540	570	
Sand	570	630	
Sand/shale	630	785	
Shale	785	910	
Sand	910	1030	
Sand/Shale	1030	1110	
Sand	1110	1270	
Shale	1270	1350	
Sand/Shale	1350	1395	
Sand	1395	1470	
Sand/Shale	1470	1560	
Red Rock	1560	1700	
Shale	1700	1715	
Little Lime	1715	1755	
Shale	1755	1760	
Big Lime	1780	1860	
Band	1860	1980	
Sand/Shale	1980	2000	
Sand	2000	2090	
Send/Shale	2090	2110	
Sand	2110	2270	
Sand/Shale	2270	2385	
Sand	2385	2510	RECEIVED Office of OII & Gas
Sand/Shalo	2510	2550	
Sand	2550	2670	assa of All & Cas
Sand/Shale	2670	2730	Olice of any
Sand	2730	2885	
Shale	2885	2970	NOV 0 5 2012
Sand	2970	3150	
Sand/Shale	3150	3240	**************************************
Sand	3240	3310	MAN Denartment of
Sand/Shale	3310	3450	WV Department of Environmental Protection
Sand	3450	3570	Environmental Flotos
Sand/Shale	3570	3720	FILAII
Sand	3720	3760	
Sand/Shale	3760	3870	
Shale	3870	4080	

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	8-7-2012	
API #:	47-049-02173	0,

arm name: Daniel Morris MRN 3H	Operator We	ll No.: 833805			
OCATION: Elevation: 1567'	Quadrangle: Fairmont East				
District: Winfield Latitude: 3,067 Feet South of 39 Deg.	County: Marie			-	
Latitude: 3,067' Feet South of 39 Deg. Longitude 8,981' Feet West of 80 Deg.		1. 00 Se 1. 00 Se			
Company: Chesapeake Appalachia, L.L.C.					
Address: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.	
Oklahoma City, OK 73154-0496	20"	120'	120'	210 Cu. Ft.	
Agent: Eric Gillespie	13 3/8"	450'	450'	494 Cu. Ft.	
Inspector: Sam Ward	9 5/8"	3170'	3170'	1397 Cu. Ft.	
Date Permit Issued: 9-30-2011	5 1/2"	13134	13134'	2627 Cu. Ft.	
Date Well Work Commenced: 1-1-2012					
Date Well Work Completed: 3-26-2012					
Verbal Plugging:					
Date Permission granted on:					
Rotary Cable Rig					
Total Vertical Depth (ft): 7,434'					
Total Measured Depth (ft): 13,135'					
Fresh Water Depth (ft.): 350'	<u> </u>				
Salt Water Depth (ft.): N/A					
Is coal being mined in area (N/Y)? N					
Coal Depths (ft.): 217'					
Void(s) encountered (N/Y) Depth(s) N	<u> </u>			·	
OPEN FLOW DATA (If more than two producing formation Producing formation Marcellus Pay 2 Gas: Initial open flow MCF/d Oil: Initial open flow 927* MCF/d Final open flow	zone depth (ft) depth	7,670' - 13,004'	-		
Time of open flow between initial and final tests 72 Static rock Pressure 4,802° psig (surface pressure) af		*Calculated rs	Office of	CEIVED Oil and Gas	
Second producing formation Pay zor Gas: Initial open flow MCF/d Oil: Initial open fl	owBl	bl/d		0 5 2012	
Final open flow MCF/d Final open flow Time of open flow between initial and final tests Static rock Pressure psig (surface pressure) af	Hours	1/d 	WV Dap environmen	urhment of fail Protection	

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Marles Willians
Signature

<u>4-2012</u> Date

Were core samples taken? Yes No	Were cuttings caugh	t during drilling? Yes X No
Were Electrical, Mechanical or Geophysica Resistivity and Nuclear in vertical section, MWD GR in later	al logs recorded on this well? If yes, please lis	st
FRACTURING OR STIMULATING, P DETAILED GEOLOGICAL RECORI	UT THE FOLLOWING: 1). DETAILS PHYSICAL CHANGE, ETC. 2). THE WEI D OF THE TOPS AND BOTTOMS OF LLBORE FROM SURFACE TO TOTAL I	LL LOG WHICH IS A SYSTEMATIC ALL FORMATIONS, INCLUDING
Perforated Intervals, Fracturing, or Stimula	ting:	
(See Attached)		
Plug Back Details Including Plug Type and	Depth(s):	
<u> </u>		
Formations Encountered: Surface:	Top Depth /	Bottom Depth
Surrect.		
(See Attached)		· · · · · · · · · · · · · · · · · · ·
		
	<u> </u>	
		The second secon
		CHOCOLOGICAL CON DOS

SEP 65 2012

Well Number and Name: 833805 Daniel Morris MRN 3H

PERFO	RATION RE	CORD				STIMULAT	10N RECOR	D		
	Interval P	erforated				F	luid	Propp	ing Agent	Average
Date	From	То	Date	Interval	Treated	Туре	Amount	Туре	Amount	Injection
3/1/2012	12,420	13,004	3/23/2012	12,420	13,004	Slk wtr	12,588	Sand	665,040	74
3/23/2012	11,741	12,326	3/23/2012	11,741	12,326	Slk wtr	12,410	Sand	667,140	80
3/23/2012	11,063	11,647	3/24/2012	11,063	11,647	Sik wtr	12,464	Sand	665,480	80
3/24/2012	10,384	10,969	3/24/2012	10,384	10,969	Sik wtr	12,289	Sand	675,780	80
3/24/2012	9,706	10,290	3/25/2012	9,706	10,290	Sik wtr	12,883	Sand	665,280	80
3/25/2012	9,027	9,612	3/26/2012	9,027	9,612	Sik wtr	12,434	Sand	667,600	79
3/26/2012	8,349	8,933	3/26/2012	8,349	8,933	Sik wtr	12,182	Sand	664,620	80
3/26/2012	7,670	8,255	3/26/2012	7,670	8,255	Slk wtr	12,263	Sand	664,620	77
									<u> </u>	
						<u> </u>				<u> </u>
						<u> </u>			1	
						L				
									1	
		l			l	L		1		

RECEIVED Office of Oil and Gos

SEP 0 5 2012

WV Department of Environmental Projection

LATERAL WELLBORE

Maximum TVD of wellbore: 7434 ft TVD @ 13135 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
SS/SHALE	0	0	860	860
SS/SLTSTN	860	860	964	964
SS/SHALE	964	964	1042	1042
LS/SHALE	1042	1042	1200	1200
SS/SLTSTN	1200	1200	1780	1780
SLTSTN/SHALE	1780	1780	2144	2144
SS/SLTSTN	2144	2144	2262	2262
SLTSTN/SHALE	2262	2262	4348	4348
SS/SLTSTN	4348	4348	4650	4650
SLTSTN	4650	4650	5258	5258
SLTSTN/SHALE	5258	5258	6884	6883
SHALE	6884	6883	7026	7013
GENESEO	7026	7013	7057	7040
TULLY	7057	7040	7136	7106
HAMILTON	7136	7106	7491	7313
MARCELLUS	7491	7313	13135	7434
TD	13135	7434		0

RECEIVED Office of Oil and Gas

SEP 9 5 2012

WV Deputiment of Environmental molection

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	8-7-2012	×ν
API#:	47-049-02190	01

Farm name: Daniel Morris MRN 6H			Operator	Well No.: 83460	00
LOCATION: Elevation: 1,567'			Quadran	gle: Fairmont Eas	st
District: Winfield			County:	Marion	
Latitude: 3,053'	Feet South of 39	Deg.		Min. 00	Sec.
Longitude 8,978'	Feet West of 80	Deg.	00	Min. 00	_Sec.

Company: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
Oklahoma City, OK 73154-0496	20"	119'	119'	230 Cu. Ft.
Agent: Eric Gillespie	13 3/8"	455'	455'	494 Cu. Ft.
Inspector: Sam Ward	9 5/8"	3149'	3149	1504 Cu. Ft.
Date Permit Issued: 11-17-2011	5 1/2"	13724'	13724'	2638 Cu. Ft.
Date Well Work Commenced: 1-21-2012				
Date Well Work Completed: 3-27-2012				
Verbal Plugging:				
Date Permission granted on:				
Rotary Cable Rig				
Total Vertical Depth (ft): 7,370'				
Total Measured Depth (ft): 13,724'				
Fresh Water Depth (ft.): 350'				
Salt Water Depth (ft.): N/A				
Is coal being mined in area (N/Y)? N				
Coal Depths (ft.): 217'				
Void(s) encountered (N/Y) Depth(s) N				

	than two producing formations ple		ta on separate sheet)
Gas: Initial open flow Final open flow 2,442* Time of open flow betw	MCF/d Oil: Initial open flow MCF/d Final open flow 0 een initial and final tests 40 psig (surface pressure) after	Bbl/d Bbl/d	RECEIVED Office of Oil and Gas
	n Pay zone dep		SEP 0 5 2012
Final open flow Time of open flow betw	MCF/d Oil: Initial open flow MCF/d Final open flow een initial and final tests psig (surface pressure) after	Bbl/d	WV Debution of Environmental adda as

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Were core samples taken? YesNo_X	Were cuttings caught during drilling? Yes X NoNo
Were Electrical, Mechanical or Geophysical logs recorded on Resistivity and Nuclear in the vertical, LWD GR in lateral	this well? If yes, please list
FRACTURING OR STIMULATING, PHYSICAL CHA	LOWING: 1). DETAILS OF PERFORATED INTERVALS, NGE, ETC. 2). THE WELL LOG WHICH IS A SYSTEMATIC PS AND BOTTOMS OF ALL FORMATIONS, INCLUDING SURFACE TO TOTAL DEPTH.
Perforated Intervals, Fracturing, or Stimulating:	
(See Attached)	
	·
Plug Back Details Including Plug Type and Depth(s):	
Formations Encountered: Top Surface:	Depth / Bottom Depth
(See Attached)	
	Office of Oil and Sos

- SEP 0 5 2012

Well Number and Name: 834600 Daniel Morris MRN 6H

PERFO	RATION RE	CORD				STIMULAT	ION RECOR	D		
	Interval P	erforated				FI	luid		ing Agent	Average
Date	From	То	Date	Interval	Treated	Type		Туре	Amount	Injection
2/26/2012	13,032	13,591	3/21/2012	13,032	13,591	Sik wtr	13,736	Sand	564,880	78
3/21/2012	12,360	12,919	3/22/2012	12,360	12,919	Slk wtr	16,563	Sand	662,520	80
3/23/2012	11,688	12,247	3/23/2012	11,688	12,247	Slk wtr	12,469	Sand	661,240	80
3/23/2012	11,016	11,575	3/23/2012	11,016	11,575	Sik wtr	12,479	Sand	670,740	80
3/23/2012	10,343	10,903	3/24/2012	10,343	10,903	Sik wtr	12,487	Sand	666,600	80
3/25/2012	9,671	10,230	3/25/2012	9,671	10,230	Slk wtr	12,560	Sand	664,360	80
3/25/2012	8,991	9,558	3/25/2012	8,991	9,558	Sik wtr	12,156	Sand	662,060	80
3/25/2012	8,327	8,886	3/27/2012	8,327	8,886	Sik wtr	12,218	Sand	664,220	80
3/27/2012	7,655	8,214	3/27/2012	7,655	8,214	Sik wtr	12,060	Sand	668,600	80
			ļ		ļ		<u> </u>			
								-		
						 				
								L		
					<u> </u>				ļ	
		<u> </u>	J		<u> </u>		L,	L	<u> </u>	L

RECEIVED
Office of Oil and Gas

SEP 0 5 2012

WV Depution and of Environmental Procession

LATERAL WELLBORE

Maximum TVD of wellbore: 7370 ft TVD @ 7690 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)	
SS	0	0	764	764	
SLTSTN	764	764	806	806	
SLTSTN/SHALE	806	806	828	828	
SHALE	828	828	888	888	
SS/SHALE	888	888	914	914	
SS/SLTSTN	914	914	952	952	
SS/LS	952	952	980	980	
LS	980	980	1012	1012	
LS/SS	1012	1012	1036	1036	
LS	1036	1036	1130	1130	
SS	1130	1130	1460	1460	
SLTSN/SS	1460	1460	1490	1490	
SS	1490	1490	1528	1528	
SLTSTN/SS	1528	1528	1725	1725	
SS	1725	1725	1790	1790	
SS/SLTSTN	1790	1790	1810	1810	
SLTSTN	1810	1810	1850	1850	
SLTSTN/SHALE	1850	1850	2010	2010	
SLTSTN/SS	2010	2010	2416	2416	
SHALE/SS	2416	2416	2930	2930	
SLTSTN/SS	2930	2930	3242	3242	
SLTSTN/SHALE	3242	3242	3900	3900	
SLTSTN/SS	3900	3900	4146	4146	
SLTSTN/SHALE	4146	4146	5418	5418	
SHALE	5418	5418	7104	7011	
GENESEO	7104	7011	7134	7040	
TULLY	7134	7040	7203	7103	
HAMILTON	7203	7103	7464	7303	
MARCELLUS	7464	7303	13724	7367	
TD	13724	7367		0	
		0		0	

RECEIVED Office of Oil and Sos

SEP 0 5 2012

WV Dapursians w Environmental malecauri

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	10-2-2012	γ^{ρ}
API#:	47-051-01501	

n name: Ruth Keller MSH 3H		Opti	ator won	No.: 833794			
CATION: Elevation: 133	0'	Quad	irangle: <u>4</u>	86-Moundsville			
District: Union		Cour	County: Marshall				
Latitude: 8200' Feet South of 40 Deg. 00 Min. 00					Sec.		
Longitude 5250	Feet West of 80	Deg 40		Sec.	•		
Company: Chesape	ake Appalachia, L.L.C.						
Address: P.O. Box	c 18496	Casi Tub	ng & ing	Used in drilling	Left in well	Cement fill up Cu. Ft.	
Oklahoma City, OK 73154-0496			20"	125'	125'	Driven	
Agent: Eric Gillespie			3 3/8"	908'	908'	926 Cu. Ft.	
Inspector: Bill Hendershot			5/8"	2260	2260'	948 Cu. Ft.	
Date Permit Issued: 11-30-2011			1/2"	13528'	13528'	3256 Cu. Ft.	
	nmenced: 5-5-2012						
Date Well Work Con	7.0.0040						
Verbal Plugging:							
Date Permission gran	nted on:						
Rotary Cabl	e Rig						
Total Vertical Dept	th (ft): 6422'(cement plug @ 56	314'-6413')					
Total Measured De	oth (ft): 13534'						
Fresh Water Depth	(ft.): 175'						
Salt Water Depth (f	t.): 1070'						
Is coal being mined i	n area (N/Y)? N					<u> </u>	
Coal Depths (ft.): 82	3			•			
Void(s) encountered	(N/Y) Depth(s) Y 823'						
Void(s) encountered OPEN FLOW DATA (If n	(N/Y) Depth(s) Y 823'	formations ple	ease includ	le additional da	ata on separate s	sheet)	
Producing formation M		Pay zone d					
Gas: Initial open flow_ Final open flow 1,10		l open flow pen flow 215	Bb Bbi				
	etween initial and final to			*Calculated	ि ो हि	Section 3 & Second	
Static rock Pressure 4,0							
Second producing formation Pay zone depth (ft)			UCT (1.2012				
Gas: Initial open flow		•		 ol/d			
Final open flow		pen flow			•	•	
•	etween initial and final to				EnVironna		

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Morland (Jellians
Signature

1<u>0-1-12013</u> Date

Were core samples taken? YesNo_	<u> </u>	cuttings caught during	drilling? YesNo
Were Electrical, Mechanical or Geophysical togs run from 0'-6,422'MD; LWD GR run from 5,509' MD - 13	logs recorded on this well? I	f yes, please list GR, neu	tron, density, and resistivity open hole
NOTE: IN THE AREA BELOW PU FRACTURING OR STIMULATING, PH DETAILED GEOLOGICAL RECORD COAL ENCOUNTERED BY THE WEL	HYSICAL CHANGE, ETC. OF THE TOPS AND BO	2). THE WELL LOG OTTOMS OF ALL I	WHICH IS A SYSTEMATIC
Perforated Intervals, Fracturing, or Stimulati	ng:		
(See attached)			
Plug Back Details Including Plug Type and	Depth(s): Cement plug (@ 5614'-6413'	
Formations Encountered: Surface:	Top Depth		Bottom Depth
(See attached)			
			المنافرة والمستوامية المتال
			Col C. Lan

Well Number and Name: 833794 Ruth Keller MSH 3H

PERFO	RATION RE	CORD				STIMULAT	ION RECOR	D		
	Interval P	erforated		Fluid Propping Agent		Fluid		ing Agent	Average	
Date	From	То	Date	Interval	Treated	Туре	Amount	Type	Amount	Injection
6/7/2012	12,860	13,403	6/28/2012	12,860	13,403	Slk wtr	12,335	Sand	622,170	86
6/28/2012	12,238	12,781	6/28/2012	12,238	12,781	Slk wtr	12,289	Sand	623,380	85
6/28/2012	11,615	12,159	6/29/2012	11,615	12,159	Slk wtr	12,463	Sand	622,760	85
6/29/2012	10,993	11,536	6/29/2012	10,993	11,536	Sik wtr	12,533	Sand	622,780	82
6/29/2012	10,371	10,914	6/30/2012	10,371	10,914	Sik wtr	12,159	Sand	567,340	86
6/30/2012	9,749	10,292	6/30/2012	9,749	10,292	Sik wtr	12,167	Sand	622,380	86
7/1/2012	9,127	9,670	7/1/2012	9,127	9,670	Slk wtr	12,584	Sand	622,520	87
7/1/2012	8,505	9,048	7/2/2012	8,505	9,048	Slk wtr	12,111	Sand	622,060	85
7/2/2012	7,882	8,426	7/2/2012	7,882	8,426	Sik wtr	12,388	Sand	622,740	86
7/2/2012	7,260	7,803	7/2/2012	7,260	7,803	Sik wtr	12,665	Sand	623,060	85
7/3/2012	6,638	7,181	7/3/2012	6,638	7,181	Slk wtr	12,613	Sand	633,000	87
			-							
				. · · v	 		 	-		
			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>

OCT 18 23/2

VERTICAL PILOT HOLE

Formation/Lithology	Top Depth, TVD/MD (ft)	
LS	0	180
LS/SS	180	270
SS	270	823
COAL (VOID)	823	830
SS	830	960
SS/SH	960	1290
SS/LS	1290	1350
LS/SH	1350	1410
SS	1410	1900
BIG INJUN (SS)	1900	2108
SH	2108	6202
GENESEO	6202	6224
TULLY	6224	6270
HAMILTON	6270	6341
MARCELLUS	6341	6393
ONONDAGA (LS)	6393	
TD OF PILOT HOLE		6422

LATERAL SIDETRACK WELLBORE

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Dep TVD (ft)	th,
LS	0	0	180	180	
LS/SS	180	180	270	270	
SS	270	270	823	823	
COAL (VOID)	823	823	830	830	
SS	830	830	960	960	
SS/SH	960	960	1290	1290	
SS/LS	1290	1290	1350	1350	
LS/SH	1350	1350	1410	1410	
SS	1410	1410	1900	1900	
BIG INJUN (SS)	1900	1900	2108	2108	
SH	2108	2108	6236	6208	A Store was loss to the way
GENESEO	6236	6208	6254	6222	
TULLY	6254	6222	6316	6267	CONT. A M. Maria
HAMILTON	6316	6267	6455	6337	50T A # 112
MARCELLUS	6455	6337			
TD OF LATERAL			13534	6307	M. Commence of the Commence of

State of West Virginia Department of Environmental Protection Office of Oil and Gas

DATE:	10-3-2012	Tr
API#:	47-051-01509	

Well Operator's Report of Well Work

TION: Elevation: 1280'	Quadrangle:	Quadrangle: 486-Moundsville				
District: Union	_ County: Mars	sha!l				
Latitude: 11390' Feet South of 40 Deg		n. 00 Se	C.			
Longitude 3370 Feet West of 80 De	g. 40 Mir	1. 00 Se	c.			
Company: Chesapeake Appalachia, L.L.C.						
Address: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.		
Oklahoma City, OK 73154-0496	20"	120'	120'	460 Cu. Ft		
Agent: Eric Gillespie	13 3/8"	845'	845'	915 Cu. Ft		
Inspector: Bill Hendershot	9 5/8"	2191'	2191'	954 Cu. Ft		
Date Permit Issued: 11-17-2011	5 1/2"	11046'	11046'	2576 Cu. F		
Date Well Work Commenced: 6-1-2012						
Date Well Work Completed: 7-8-2012						
Verbal Plugging:						
Date Permission granted on:				-		
Rotary Cable Rig						
Total Vertical Depth (ft): 6329'						
Total Measured Depth (ft): 11053'						
Fresh Water Depth (ft.): 400'						
Salt Water Depth (ft.): 1360'						
Is coal being mined in area (N/Y)? N						
Coal Depths (ft.): 755'						
Void(s) encountered (N/Y) Depth(s) Y 762'						
as: Initial open flowMCF/d Oil: Initial open	zone depth (ft) flowB	5,700'-10,901' bl/d	ata on separate si	heet)		
Final open flow 696* MCF/d Final open flow Time of open flow between initial and final tests 37		ol/d *Calculated				
tatic rock Pressure 4.113* psig (surface pressure)						
econd producing formation Pay z	one depth (ft))		
as: Initial open flow MCF/d Oil: Initial open				4.7		
Final open flow MCF/d Final open flot Time of open flow between initial and final tests	wBb	1/d	San	,		
tatic rock Pressurepsig (surface pressure) a	Hours		day	***		

that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Marlin Williams.
Signature

Were core samples taken?	Yes	_ No_X	Wei	re cuttings caught	during drilling	Yes	No_X
Were Electrical, Mechanica	l or Geoph	ysical logs rec	corded on this well?	If yes, please list	GR LWD from	n 5,665' ·	- 11,053' MD
NOTE: IN THE AREA FRACTURING OR STIN DETAILED GEOLOGIC COAL ENCOUNTERED	CAL REC	CORD OF T	AL CHANGE, ET(HE TOPS AND 1	C. 2). THE WELI	L LOG WHIC	TT TO A O	***
Perforated Intervals, Fractur	ring, or Stir	mulating:					
(See attached)				·			
Plug Back Details Including	Plug Type	and Depth(s)	:				
			·				
Formations Encountered: Surface:			Top Depth			Bottom I	<u>Depth</u>
(See attached)							
-							
							
						·	- And - Control of the Control of th
					Co.	(g)	
					VII.		· · · · · · · · · · · · · · · · · · ·
					•	•	•

Well Number and Name: 833978 Serafin Ortiz MSH 8H

PERFO	RATION RE		STIMULATION RECORD							
	Interval F	Perforated				F	luid	Propp	ing Agent	Average
Date	From		Date	Interval	Treated	Type	Amount	Туре	Amount	Injection
6/22/2012	10,432	10,901	7/3/2012	10,432	10,901	Slk wtr	10,931	Sand	536,680	78
7/5/2012	9,899	10,368	7/5/2012	9,899	10,368	Slk wtr	11,884	Sand	537,420	80
7/5/2012	9,366	9,835	7/6/2012	9,366	9,835	Sik wtr	10,698	Sand	536,720	78
7/6/2012	8,833	9,302	7/6/2012	8,833	9,302	Sik wtr	11,886	Sand	537,460	80
7/6/2012	8,299	8,769	7/7/2012	8,299	8,769	Slk wtr	10,527	Sand	536,520	78
7/7/2012	7,766	8,235	7/7/2012	7,766	8,235	Slk wtr	10,928	Sand	535,960	80
7/7/2012	7,233	7,702	7/8/2012	7,233	7,702	Sik wtr	10,677	Sand	535,660	78
7/8/2012	6,700	7,169	7/8/2012	6,700	7,169	Slk wtr	10,460	Sand	547,240	80
										
-								L		
							 			

Canana Con

÷

V

LATERAL SIDETRACK WELLBORE (no vertical pilot hole associated with this well)

Maximum TVD of wellbore: 6329 ft TVD @ 10829 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
SS/LS/SILTSTONE	0	0	310	310
SS/LS	310	310	755	755
PITTSBURGH COAL	755	755	764	764
SS	764	764	1800	1800
BIG INJUN	1800	1800	2020	2020
SH	2020	2020	6147	6111
GENESEO (SH)	6147	6111	6176	6131
TULLY (LS)	6176	6131	6244	6177
HAMILTON (SH)	6244	6177	6390	6247
MARCELLUS (SH)	6390	6247		
TD OF LATERAL			11053	6328

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

Farm name: Esther Weeks 1H	Operator Well No.: 832742				
LOCATION: Elevation: 1260'	Quadrangle: Valley Grove WV				
District: Liberty	County: Ohio	1			
Latitude: 3040' Feet South of 40 Deg.			c.		
Longitude 5920' Feet West of 80 Deg.	32 Mir	n. 30 Se	c.		
Company: Chesapeake Appalachia, L.L.C.					
Address: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.	
Oklahoma City, OK 73154-0496	20"	100'	100'	303 Cu. Ft.	
Agent: Eric Gillespie	13 3/8"	353'	353'	409 Cu. Ft.	
Inspector: Bill Hendershot	9 5/8"	2160'	2160'	1010 Cu. Ft.	
Date Permit Issued: 12/8/2010	5 1/2"	12372'	12372'	2879 Cu. Ft.	
Date Well Work Commenced: 2/4/2011					
Date Well Work Completed: 2/3/2012			<u> </u>		
Verbal Plugging:					
Date Permission granted on:					
Rotary Cable Rig					
Total Vertical Depth (ft): 6744' (cement plug@ 5000' - 6731')					
Total Measured Depth (ft): 12377'					
Fresh Water Depth (ft.): 30'					
Salt Water Depth (ft.): 1000'					
Is coal being mined in area (N/Y)? Y					
Coal Depths (ft.): 690'					
Void(s) encountered (N/Y) Depth(s) N					
OPEN FLOW DATA (If more than two producing formation Producing formation Marcellus Pay z Gas: Initial open flow MCF/d Oil: Initial open flow Final open flow MCF/d Final open flow Time of open flow between initial and final tests 74 Static rock Pressure 4,280° psig (surface pressure) after the producing formation producing	one depth (ft) 7 owBl - 161Bb Hours	7.557-12,214' bl/d bl/d *Calculated	ata on separate si	neet)	
poig (surface pressure) are	einou	15			
Second producing formation Pay zon					
Gas: Initial open flow MCF/d Oil: Initial open flo		bl/d			
Final open flow MCF/d Final open flow	Bb				
Time of open flow between initial and final tests Static rock Pressurepsig (surface pressure) after					

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Marline Williams
Signature

9-7-2012 Date

Were core samples taken? YesNo_N	We	ere cuttings caught during drilling	g? Yes <u>Y</u> No
Were Electrical, Mechanical or Geophysical logs reco	orded on this well?	If yes, please list GR, neutron	, density, and resistivity
upen note togs turn note 0-07-00 mb, EVVD GR note 400 F-1254 F Mb.			
NOTE: IN THE AREA BELOW PUT THE FRACTURING OR STIMULATING, PHYSICA DETAILED GEOLOGICAL RECORD OF TH COAL ENCOUNTERED BY THE WELLBORE	L CHANGE, ET IE TOPS AND	C. 2). THE WELL LOG WHI BOTTOMS OF ALL FORM	CH IS A SYSTEMATIC
Perforated Intervals, Fracturing, or Stimulating:			
(See Attached)			
	- ·- ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··		
Plug Back Details Including Plug Type and Depth(s):	Cement plus	z @ 5 000' 6731'	
	Cement plug	<u>j @ 3,000 - 0731</u>	
Formations Encountered: Surface:	Top Depth	/	Bottom Depth
(See Attached)			

Well Name and Number: Esther Weeks 1H (832742)

PERFO	RATION R	ECORD	STIMULATION RECORD							
	Interval P	erforated				Fluid		Propping Agent		Average
Date	From	To	Date	Interval	Treated	Туре	Amount	Type	Amount	Injection
1/29/2012	11,832	12,214	1/29/2012	11,832	12,214	Slk Wtr	11,522	Sand	578,417	86
1/30/2012	11,357	11,739	1/30/2012	11,357	11,739	Slk Wtr	12,610	Sand	`572,721	85
1/31/2012	10,882	11,264	1/31/2012	10,882	11,264	Slk Wtr	11,161	Sand	572,901	85
1/31/2012	10,407	10,789	1/31/2012	10,407	10,789	Slk Wtr	9,496	Sand	397,089	85
2/1/2012	9,932	10,314	2/1/2012	9,932	10,314	Sik Wtr	10,975	Sand	571,331	87
2/1/2012	9,457	9,839	2/1/2012	9,457	9,839	Slk Wtr	12,076	Sand	572,278	84
2/2/2012	8,982	9,364	2/2/2012	8,982	9,364	Slk Wtr	10,899	Sand	573,186	84
2/2/2012	8,507	8,889	2/2/2012	8,507	8,889	Slk Wtr	10,871	Sand	571,124	86
2/3/2012	8,032	8,414	2/3/2012	8,032	8,414	Sik Wtr	10,937	Sand	556,984	85
2/3/2012	7,557	7,939	2/3/2012	7,557	7,939	Slk Wtr	10,533	Sand	530,663	86
<u> </u>										

VERTICAL PILOT HOLE

Formation/Lithology	Top Depth, TVD/MD (ft)	Bottom Depth, TVD/MD (ft)
SS	0	100
LS/SS	100	690
PITTSBURG COAL	690	700
LS/SHALE	700	810
SS/LS	810	950
SHALE	950	1300
SS	1300	1740
BIG LIME	1740	1850
BIG INJUN	1850	2100
SHALE	2100	6480
GENESEO	6480	6501
TULLY	6501	6525
HAMILTON	6525	6647
MARCELLUS	6647	6704
ONONDAGA (LS)	6704	
TD OF PILOT HOLE		6744

LATERAL SIDETRACK WELLBORE

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
SS	0	0	100	100
LS/SS	100	100	690	690
PITTSBURG COAL	690	690	700	700
LS/SHALE	700 -	700	810	810
SS/LS	810	810	950	950
SHALE	950	950	1300	1300
SS	1300	1300	1740	1740
BIG LIME	1740	1740	1850	1850
BIG INJUN	1850	1850	2100	2100
SHALE	2100	2100	6954	6463
GENESEO	6954	6463	7010	6492
TULLY .	7010	6492	7036	6505
HAMILTON	7036	6505	7386	6633
MARCELLUS	7386	6633		
TD OF LATERAL			12377	6584

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	8-7-2012	~ JyP
API#:	47-069-00079	Ŋ,

rm name: Charles Frye 3H	Operator Well No.: 833118 Quadrangle: Valley Grove, WV					
OCATION: Elevation: 1260'						
District: Triadelphia Latitude: 9920' Feet South of 40 Deg		n. 00 Se	c.			
Longitude 11010' Feet West of 80 Deg	g. 32 Min	1. 30 Se	c.			
Company: Chesapeake Appalachia, L.L.C.						
Address: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.		
Oklahoma City, OK 73154-0496	20"	90'	90'	Driven		
Agent: Eric Gillespie	13 3/8"	682'	682'	558 Cu. Ft.		
Inspector: Bill Hendershot	9 5/8"	2202'	2202'	948 Cu. Ft.		
Date Permit Issued: 4-8-2011	5 1/2"	12610'	12610'	3147 Cu. Ft.		
Date Well Work Commenced: 6-18-2011						
Date Well Work Completed: 3-8-2012						
Verbal Plugging:						
Date Permission granted on:						
Rotary Cable Rig						
Total Vertical Depth (ft): 6466'						
Total Measured Depth (ft): 12618'						
Fresh Water Depth (ft.): 30'						
Salt Water Depth (ft.): 1135'	-					
Is coal being mined in area (N/Y)? N						
Coal Depths (ft.): 622'						
Void(s) encountered (N/Y) Depth(s) Y 622'						
OPEN FLOW DATA (If more than two producing format Producing formation Marcellus Pay Gas: Initial open flow MCF/d Oil: Initial open Final open flow 2,316* MCF/d Final open flo Time of open flow between initial and final tests 62	zone depth (ft) flow B w 178 Bb Hours	6,700° - 12,481° bl/d bl/d bl/d 5 *Calculated	ata on separate s	heet)		
Static rock Pressure 4,169* psig (surface pressure) a	ıfterHou	rs				
Second producing formation Pay ze				en e		
Gas: Initial open flow MCF/d Oil: Initial open		bl/d				
Final open flow MCF/d Final open flo				e e		
Time of open flow between initial and final tests Static rock Pressurepsig (surface pressure) a	Hours	, ***	-			
psig (surface pressure) a	meiMou	12				

all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Marley Whiliams
Signature

1-10-2012 Date

Were core samples taken? Yes_	No_X	Were cuttings	caught during drilling? Y	es_XNo
Were Electrical, Mechanical or G	Geophysical logs record	ed on this well? If yes, plo	ease list	
NOTE: IN THE AREA BE FRACTURING OR STIMULA DETAILED GEOLOGICAL COAL ENCOUNTERED BY	ATING, PHYSICAL RECORD OF THE	CHANGE, ETC. 2). THI TOPS AND BOTTOM	E WELL LOG WHICH I IS OF ALL FORMATI	IS A SYSTEMATIC
Perforated Intervals, Fracturing,	or Stimulating:			
(See Attached)				
Plug Back Details Including Plug	g Type and Depth(s):			
Formations Encountered: Surface:		Top Depth	/В	ottom Depth
(See Attached)				

Well Number and Name: 833118 Charles Frye3H

PERFO	RATION RE	CORD	[STIMULATION RECORD						
	Interval P	erforated				Fluid		Propping Agent		Average
Date	From	То	Date	Interval	Treated	Type	Amount	Туре	Amount	Injection
12/9/2011	12,123	12,481	2/19/2012	12,123	12,481	Sik wtr	10,860	Sand	572,080	70
2/19/2012	11,671	12,029	2/20/2012	11,671	12,029	Slk wtr	10,506	Sand	571,900	77
2/20/2012	11,219	11,577	2/21/2012	11,219	11,577	Sik wtr	10,732	Sand	570,740	84
2/21/2012	10,767	11,125	2/22/2012	10,767	11,125	Slk wtr	13,584	Sand	570,240	76
2/22/2012	10,315	10,673	2/23/2012	10,315	10,673	Slk wtr	11,114	Sand	572,480	79
2/23/2012	9,863	10,222	2/25/2012	9,863	10,222	Slk wtr	11,289	Sand	572,220	76
2/25/2012	9,409	9,770	2/27/2012	9,409	9,770	Slk wtr	10,536	Sand	571,020	80
2/27/2012	8,960	9,319	3/3/2012	8,960	9,319	Sik wtr	15,436	Sand	569,960	80
3/3/2012	8,508	8,869	3/4/2012	8,508	8,869	Slk wtr	10,350	Sand	377,260	83.3
3/4/2012	8,056	8,415	3/5/2012	8,056	8,415	Slk wtr	10,814	Sand	571,660	79
3/5/2012	7,604	7,963	3/6/2012	7,604	7,963	Slk wtr	10,507	Sand	570,420	79
3/6/2012	7,152	7,511	3/7/2012	7,152	7,511	Slk wtr	10,647	Sand	571,260	83
3/7/2012	6,700	7,060	3/8/2012	6,700	7,060	Sik wtr	10,832	Sand	573,500	85
	,									
							<u> </u>			

LATERAL WELLBORE

Maximum TVD of wellbore: 6466 ft TVD @ 7905 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
LS/SHALE	0	0	190	190
SHALE/LS	190	190	220	220
LS/SHALE	220	220	300	300
SHALE/LS	300	300	350	350
SHALE/COAL	350	350	380	380
LS/SHALE	380	380	530	530
SHALE/SS	530	530	560	560
LS/SS	560	560	620	620
ABANDONED MINE SHAFT	620	620	636	636
NO SAMPLES	636	636	683	683
SHALE	683	683	950	950
SHALE/SS	950	950	1050	1050
SHALE	1050	1050	1100	1100
SHALE/SS	1100	1100	1200	1200
SS/SHALE	1200	1200	1250	1250
SS	1250	1250	1300	1300
SHALE/SS	1300	1300	1350	1350
SS/SHALE	1350	1350	1400	1400
SHALE/SS	1400	1400	1430	1430
SS/SHALE	1430	1430	1600	1600
SHALE/SS	1600	1600	1620	1620
SS/SHALE	1620	1620	1650	1650
SS/LS	1650	1650	1750	1750
SS/SHALE	1750	1750	1810	1810
BIG INJUN	1810	1810	2020	2020
SHALE	2020	2020	2350	2350
SHALE/SS	2350	2350	2400	2400
SHALE	2400	2400	3250	3250
SHALE/SS	3250	3250	3300	3300
SHALE	3300	3300	4270	4270
SHALE/SS	4270	4270	4300	4300
SHALE	4300	4300	5990	5989
SHALE/LS	5990	5989	6080	6076
SHALE	6080	6076	6240	6222
SHALE/LS	6240	- 6222	6354	6316
TULLY	6354	6316	6390	6343
HAMILTON	6390	6343	6641	6454
MARCELLUS	6641	6454	12618	6413

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	9-6-2012	76
API#:	47-069-00091	- ''

Farm name: Charles Frye OHI 10H	Operator Well No.: 833122					
LOCATION: Elevation: 1260	_ Quadrangle:	Valley Grove, WV	<i>1</i>			
District: Triadelphia	County: Ohio					
Latitude: 10350' Feet South of 40 Deg.			c.			
Longitude 10950' Feet West of 80 Deg.	32 Mir	s. 30 See	c.			
Company: Chesapeake Appalachia, L.L.C.						
Address: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.		
Oklahoma City, OK 73154-0496	20"	100'	100'	157 Cu. Ft.		
Agent: Eric Gillespie	13 3/8"	678'	678'	784 Cu. Ft.		
Inspector: Derek Haught	9 5/8"	2218'	2218'	1083 Cu. Ft.		
Date Permit Issued: 7-11-2011	5 1/2"	12745'	12745'	3046 Cu. Ft.		
Date Well Work Commenced: 7-20-2011						
Date Well Work Completed: 3-7-2012						
Verbal Plugging:						
Date Permission granted on:						
Rotary Cable Rig						
Total Vertical Depth (ft): 6599'						
Total Measured Depth (ft): 12747'						
Fresh Water Depth (ft.): 78', 300'						
Salt Water Depth (ft.): 1135'						
Is coal being mined in area (N/Y)? N						
Coal Depths (ft.): 632'						
Void(s) encountered (N/Y) Depth(s) Y 632'						
OPEN FLOW DATA (If more than two producing formation Producing formation Marcellus Pay : Gas: Initial open flow MCF/d Oil: Initial open flow Final open flow 2,790° MCF/d Final open flow Time of open flow between initial and final tests 47 Static rock Pressure 4,283° psig (surface pressure) at	zone depth (ft) lowB v178BtHours fterHou	6,800 - 12,602 bl/d bl/d 5 *Calculated	ata on separate s	heet)		
Second producing formation Pay zo Gas: Initial open flow MCF/d Oil: Initial open f		h//d				
Final open flow MCF/d Final open flow						
Time of open flow between initial and final tests						
Static rock Pressurepsig (surface pressure) at	fterHou	rs				
Coartify under manufact of law that I have necessally evenined	and am familia		matian ashmitta	d an shin dan		

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Marley Williams
Signature

9-10-2012 Date

Were core samples taken? Yes]	No <u>X</u>	Were cuttings	caught during drillin	g? Yes <u>X</u>	No
Plug Back Details Including Plug Type and Depth(s): Formations Encountered: Top Depth / Bottom Depth urface:					
DETAILED GEOLOGICAL RECOI	PHYSICAL CHA RD OF THE TO	NGE, ETC. 2). THE PS AND BOTTOM:	WELL LOG WHI	TOWN A STUDI	TO A MESS
Perforated Intervals, Fracturing, or Stimu	lating:				
(See Attached)					
Plug Back Details Including Plug Type ar	nd Denth(s):				
ring Back Betains including ring Type at					
Formations Encountered: Surface:		Depth /		Bottom Dept	<u>h</u>
(See Attached)					
					<u> </u>
					
			······································		
					

Weil Number and Name: 833122 Charles Frye OHI 10H

PERFO	RATION RE	CORD			······································	STIMULAT	TION RECOR	RD.		
		erforated				Fluid			Propping Agent	
Date	From	То	Date	Interval	Treated	Type	Amount	Туре	Amount	Average Injection
12/10/2011	12,242	12,602	2/24/2012	12,242	12,602	Slk wtr	10,444	Sand	570,220	84
2/24/2012	11,788	12,149	2/25/2012	11,788	12,149		10,838	Sand	568,440	81
2/25/2012	11,337	11,695	2/26/2012	11,337	11,695	Sik wtr	10,279	Sand	572,620	84
2/26/2012	10,881	11,242	2/27/2012	10,881			11,518	Sand	441,680	80
2/27/2012	10,428	10,788	2/28/2012	10,428			12,372	Sand	571,780	78
2/28/2012	9,974	10,335	2/29/2012	9,974		4	11,093	Sand	571,300	82
2/29/2012	9,521	9,881	3/1/2012	9,521	9,881	Slk wtr	11,500	Sand	548,840	
3/1/2012	9,067	9,431	3/2/2012	9,067	9,431	Slk wtr	11,649	Sand	571,880	85 84
3/2/2012	8,614	8,974	3/3/2012	8,614			10,670	Sand	569,440	
3/3/2012	8,160	8,521	3/4/2012	8,160		Sik wtr	12,878	Sand	573,880	82
3/4/2012	7,708	8,067	3/5/2012	7,708		Sik wtr	10,470	Sand	571,580	64
3/5/2012	7,253	7,616	3/6/2012	7,253		Sik wtr	10,583	Sand		81
3/6/2012	6,800	7,160	3/6/2012	6,800		Sik wtr			570,820	82
	- 5,555	7,100	O/O/LOTE	0,000	7,100	SIK WU	11,188	Sand	571,400	83
					-		 	<u></u>		
									ļI	
			L					L	L	

LATERAL WELLBORE

Maximum TVD of wellbore: 6599 ft TVD @ 12300 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
LS/SHALE	0	0	622	622
PITTSBURGH COAL	622	622	630	630
LS/SHALE	630	630	650	650
SS/LS	650	650	690	690
SHALE/LS	690	690	790	790
SHALE	790	790	880	880
SS/SHALE	880	_ 880	940	940
SHALE/SS	940	940	1240	1240
SS/SHALE	1240	1240	1270	1270
SHALE/SS	1270	1270	1480	1480
SS/SHALE	1480	1480	1600	1600
LS/SHALE	1600	1600	1650	1650
BIG LIME	1650	1650	1700	1700
LS/SHALE	1700	1700	1800	- 1800
BIG INJUN	1800	1800	2040	2040
SHALE	2040	2040	3500	3500
SHALE/SS	3500	3500	3730	3730
SHALE	3730	3730	6414	6300
GENESEO	6414	6300	6445	6323
TULLY	6445	6323	6495	6357
HAMILTON	6495	6357	6735	6472
MARCELLUS	6735	6472	12747	6590
TD	12747	6590		0
		0		0

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	2012-09-26 - Amended	(
API#:	4709101210	

CATION: Elevation: 1420	Quadrangle:	Rosemont	-	
District: Unknown	County: Tay	/lor, WV		
	g. <u>31 Mi</u>	n. <u>⁶¹ S</u> ec		
Longitude Feet West of -80 De	eg. 16 Mi	n. <u>²⁸ </u>	>.	
Company: EQT Production Company				
Address: EQT Plaza, Suite 1700	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
625 Liberty Avenue, Pittsburgh, PA 15222	20	40	40	10.62
Agent: Cecil Ray	13 3/8	930.64	930.64	833.00
Inspector: Brian Harris	9 5/8	2525.6	2,525.6	959.09
Date Permit Issued: 2009-12-08	5 1/2	12,549.0	12,549	1,516.55
Date Well Work Commenced: 2011-02-27				
Date Well Work Completed: 2011-09-10				
Verbal Plugging: N/A				
Date Permission granted on: N/A				
Rotary Cable Rig V				
Total Vertical Depth (ft): 7451.34				
Total Measured Depth (ft): 12,567.00				
Fresh Water Depth (ft.): 74, 112, 139, 234, 801				
Salt Water Depth (ft.): 883				
Is coal being mined in area (N/Y)? N				
Coal Depths (ft.): 403, 630				
Void(s) encountered (N/Y) Depth(s) N/A				
Producing formation Marcellus Paroducing formation Marcellus P	ny zone depth (ft) n flowE lowBHour	Bbl/d bl/d s	·	sheet)
Second producing formationPay		 .	, j	
Gas: Initial open flow MCF/d Oil: Initial open			•	્ ું
Final open flow MCF/d Final open flow between initial and final tests				S.

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Signature

2012-09-26

Date

Were core samples taken? Yes X No Were cuttings co	aught during drilling? Yes X No
Were Electrical, Mechanical or Geophysical logs recorded on this well? If yes, plea	se list Geophysical
NOTE: IN THE AREA BELOW PUT THE FOLLOWING: 1). DETAFRACTURING OR STIMULATING, PHYSICAL CHANGE, ETC. 2). THE DETAILED GEOLOGICAL RECORD OF THE TOPS AND BOTTOMS COAL ENCOUNTERED BY THE WELLBORE FROM SURFACE TO TOTAL	WELL LOG WHICH IS A SYSTEMATIC OF ALL FORMATIONS, INCLUDING
Perforated Intervals, Fracturing, or Stimulating:	
See Attachment	
Plug Back Details Including Plug Type and Depth(s):	
Plug Back Details Including Plug Type and Deput(s).	
Formations Encountered: Top Depth / Surface:	Bottom Depth
Red Rock 330.00/350.00 Sand 350/ 403.00 Coal 403/ 406.00 Silty	/ Sand 406/ 630.00 Coal 630/ 670.00
Silty Sand 670/ 893.00 Siltstone 893/ 1346.00 Limestone 1346/ 1435.00 Sandsto	ne 1470/ 1617.00 Sandstone 1617/ 1707.00
Sandstone 1707/ 1871.00 Sandstone 1871/ 1946.00 Sandstone 194	6/ 2112.00 Sandstone 2112/ 2220.00
Sandstone 2220/ 2409.00 Sandstone 2409/ 2459.00 Sandstone 2	2459/ 2845.20 B-5 2845.2/ 3,076.60
Speechley 3076.6/ 3,410.40 Bradford 3410.4/ 3,581.40 Balltown B 35	81.4/ 3,790.30 Riley 3790.3/ 4,427.20
Benson 4427.2/ 6,644.10 Sonyea 6644.1/ 6,951.10 Middlesex 6951.	
Geneseo 7169.6/7,214.00 Tully 7214/7,274.00 Hamilton 7274/7	7,405.30 Marcellus 7405.3/ 7,467.00
Marcellus 7405.3/ 7,467.00	
	, 3,

,1,7

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
1	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SiP Detail
7/5/2011	12405 - 12527		7,278.00	8,656.00	5 Min: 4894
					10 Min: 4727
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4642
83.00	9,109.00	5,675.00	1.31		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
207,971.00	6,149.00		2,000.00		
Stage	Formation	Frac Type			
2	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/6/2011	12255 - 12377		6,782.00	8,447.00	5 Min: 5095
					10 Min: 4927
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4848
100.00	9,083.00	5,796.00	1.2		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
203,869.00	6,259.00		2,000.00		
Stage	Formation	Frac Type			
3	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/7/2011	12105 - 12227		7,307.00	7,796.00	5 Min: 5456
					10 Min: 5231
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5076
98.00	9,102.00	6,079.00	1.24		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal	·	oci
205,855.00	5,824.00		2,000.00		oci

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
4	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/7/2011	11955 - 12077		7,305.00	8,103.00	5 Min: 5649
					10 Min: 5382
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5180
100.00	8,586.00	6,112.00	1.21		
Sand Proppant	Water-bbi	SCF N2	Acid-Gal		
207,350.00	5,745.00	001 112	2,000.00		
		Eno e Tomo			
Stage 5	Formation MARCELLUS	Frac Type Slickwater			
5	WARCELLOS	Silckwalei			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/8/2011	11805 - 11927		7,139.00	8,545.00	5 Min: 5461
					10 Min: 5305
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5137
79.00	9,082.00	5,848.00	1.21		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
204,349.00	6,287.00		2,000.00		
Stage	Formation	Frac Type			
6	MARCELLUS	Slickwater			,
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/9/2011	#Error		7,237.00	8,047.00	5 Min: 5249
					10 Min: 5050
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4952
95.00	8,834.00	6,080.00			
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
213,866.00	6,495.00		2,000.00		

18,4

·

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
7	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/9/2011	11505 - 11627		6,544.00	8,629.00	5 Min: 5964
					10 Min: 5845
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5723
84.00	9,187.00	6,238.00	1.26		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
201,719.00	6,787.00				
Stage	Formation	Frac Type			
8	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/9/2011	11355 - 11477	·	6,997.00	8,474.00	5 Min: 5960
					10 Min: 5836
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5714
88.00	8,794.00	6,292.00	1.27		
Sand Proppant	Water-bbi	SCF N2	Acid-Gal		
99,429.30	5,340.00		2,000.00		
Stage	Formation	Frac Type			
9	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/10/2011	11205 - 11327	•	6,778.00	8,277.00	5 Min: 5925
					10 Min: 5772
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5673
101.00	8,877.00	6,228.00	1.26		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal	:	
201,655.00	5,390.00		2,000.00		64

. 3

Summary	Treatment	Well	Attachment	Completion	QT WR-35
		 	Frac Type	Formation	Stage
			Slickwater	MARCELLUS	10
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5841	8,194.00	7,425.00	·	11055 - 11177	7/10/2011
10 Min: 5624					
15 Min: 5472		Frac Gradient	ISIP	Max Press PSI	Avg Rate
		1.25	6,141.00	8,651.00	102.00
		Acid-Gal	SCF N2	Water-bbi	and Proppant
		2,000.00		5,314.00	202,322.00
			Frac Type	Formation	Stage
			Slickwater	MARCELLUS	11
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5540	8,462.00	6,692.00	•	10905 - 11027	7/10/2011
10 Min: 5317					
15 Min: 5198		Frac Gradient	ISIP	Max Press PSI	Avg Rate
		1.21	5,861.00	8,832.00	98.00
		Acid-Gal	SCF N2	Water-bbl	and Proppant
		2,000.00		6,476.00	210,226.00
			Frac Type	Formation	Stage
			Slickwater	MARCELLUS	12
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5644	7,934.00	7,582.00		10755 - 10877	7/12/2011
10 Min: 5473					
15 Min: 5325		Frac Gradient	ISIP	Max Press PSI	Avg Rate
		1.21	6,084.00	8,498.00	102.00
act		Acid-Gal	SCF N2	Water-bbl	Sand Proppant
		2,000.00		5,506.00	202,227.00

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
13	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/12/2011	10605 - 10727		6,948.00	7,760.00	5 Min: 5721
					10 Min: 5556
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5454
98.00	8,234.00	6,123.00	1.25		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
203,526.00	5,620.00		2,000.00		
Stage	Formation	Frac Type			
14	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/12/2011	10455 - 10577		6,879.00	8,540.00	5 Min: 5140
					10 Min: 4940
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4833
85.00	9,139.00	5,789.00	1.2	:	
Sand Proppant	Water-bbi	SCF N2	Acid-Gal		
177,269.00	5,467.00		2,000.00		
Stage	Formation	Frac Type			
15	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/13/2011	10305 - 10427		6,277.00	7,782.00	5 Min: 5538
					10 Min: 5338
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5175
100.00	8,467.00	5,871.00	1.22		, ਵੀਂ "
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		gill is
205,385.00	5,478.00		2,000.00		00,

Completion Attachment	Well Treatment Summary
Formation Frac Type	
MARCELLUS Slickwater	
From / To # of perfs	BD Press ATP Psi SIP Detail
10155 - 10277	7,006.00 7,006.00 5 Min: 5508
	10.14
Max Press PSI ISIP Fra	10 Min: 5312 c Gradient 15 Min: 5101
8,788.00 5,955.00	1.23
Water-bbl SCF N2	Acid-Gal
5,423.00	2,000.00
Formation Frac Type	
MARCELLUS Slickwater	
From / To # of perfs	BD Press ATP Psi SIP Detail
10005 - 10127	6,880.00 8,003.00 5 Min: 5380
÷	
Max Press PSI ISIP Fra	10 Min: 5160 c Gradient 15 Min: 4980
Max Press PSI ISIP Fra 8,635.00 5,875.00	1.22
6,033.00 3,673.00	1.22
Water-bbl SCF N2	Acid-Gal
5,201.00	2,000.00
Formation Frac Type	
MARCELLUS Slickwater	
From / To # of perfs	BD Press ATP Psi SiP Detail
9855 - 9977	7,102.00 8,237.00 5 Min: 5215
Max Press PSI ISIP Fra	10 Min: 4936 c Gradient 15 Min: 4801
Max Press PSI ISIP Fra 8,910.00 5,894.00	1.22
0,910.00 5,094.00	1.22
Water-bbl SCF N2	Acid-Gal
	2,000.00
5,392.00	

QT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
19	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/14/2011	9705 - 9827		7,073.00	8,107.00	5 Min: 5770
					10 Min: 5602
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5456
99.00	8,725.00	6,155.00	1.25		
and Proppant	Water-bbl	SCF N2	Acid-Gal		
205,501.00	5,501.00		2,000.00		
Stage	Formation	Frac Type			
20	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/15/2011	9555 - 9677		8,353.00	8,000.00	5 Min: 5841
					10 Min: 5704
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5549
100.00	8,180.00	6,231.00	1.26		
nd Proppant	Water-bbl	SCF N2	Acid-Gal		
204,800.00	5,587.00		2,000.00	=	
Stage	Formation	Frac Type			
21	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/15/2011	9405 - 9527		7,269.00	7,912.00	5 Min: 5890
					10 Min: 5690
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5483
100.00	8,366.00	6,328.00	1.28		; * *
and Proppant	Water-bbl	SCF N2	Acid-Gal		No.
		30.			

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
22	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/15/2011	9255 - 9377		7,600.00	7,319.00	5 Min: 5977
					10 Min: 5815
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5685
99.00	8,414.00	6,276.00	1.27		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
299,935.00	5,375.00		2,000.00		
Stage	Formation	Frac Type			
23	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/16/2011	9105 - 9227		8,169.00	8,174.00	5 Min: 5528
					10 Min: 5403
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5223
96.00	8,557.00	5,953.00	1.23	• .	
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
201,740.00	6,245.00		2,000.00		
Stage	Formation	Frac Type			
24	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/16/2011	8955 - 9077		8,304.00	7,970.00	5 Min: 5327
					10 Min: 5205
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5045
102.00	8,520.00	6,383.00	1.28		15 Min: 5045
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		\
201,620.00	5,402.00		2,000.00		

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type	•		
25	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/16/2011	8955 - 9077		7,929.00	7,638.00	5 Min: 6062
					10 Min: 6015
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5902
99.00	9,258.00	6,535.00	1.29		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
201,860.00	5,325.00		2,000.00		
Stage	Formation	Frac Type			
26	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/17/2011	8655 - 8777		7,145.00	8,100.00	5 Min: 5464
					10 Min: 5308
Avg Rate	Max Press PSI	ISIP	Frac Gradient	;	15 Min: 5146
99.00	8,590.00	6,642.00	1.32		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
201,267.00	5,241.00		2,000.00		
Stage	Formation	Frac Type			
27	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/17/2011	8505 - 8626		7,947.00	7,863.00	5 Min: 5801
					10 Min: 5580
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5351
100.00	8,441.00	6,232.00	1.25		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		(· '.\
201,055.00	5,093.00		2,000.00		\sqrt{g}

Summary	Treatment	Well	Attachment	Completion	QT WR-35
•••			Frac Type	Formation	Stage
			Slickwater	MARCELLUS	28
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5754	7,855.00	8,734.00	•	8355 - 8477	7/17/2011
10 Min: 5510					
15 Min: 5245		Frac Gradient	ISIP	Max Press PSI	Avg Rate
		1.23	6,044.00	8,557.00	100.00
		Acid-Gal	SCF N2	Water-bbl	and Proppant
		2,000.00	-	6,656.00	202,834.00
			Frac Type	Formation	Stage
			Slickwater	MARCELLUS	29
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5485	6,846.00	8,318.00		8205 - 8327	7/18/2011
10 Min: 5225					
15 Min: 5056		Frac Gradient	ISIP	Max Press PSI	Avg Rate
		1.23	5,993.00	7,543.00	87.00
		Acid-Gal	SCF N2	Water-bbl	and Proppant
		2,000.00		5,583.00	200,860.00
			Frac Type	Formation	Stage
			Slickwater	MARCELLUS	30
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5444	7,516.00	7,885.00		8055 - 8177	7/18/2011
10 Min: 5040					
15 Min: 4827		Frac Gradient	ISIP	Max Press PSI	Avg Rate
e e		1.27	6,357.00	8,457.00	92.00
		Acid-Gal	SCF N2	Water-bbl	and Proppant
gi ^{j.}				5,362.00	199,819.00

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
31	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/19/2011	7905 - 8027		6,495.00	7,585.00	5 Min: 5019
					10 Min: 4723
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4658
98.00	8,798.00	6,097.00	1.24		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
201,988.00	5,241.00		2,000.00		
Stage	Formation	Frac Type			
32	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/19/2011	7755 - 7877		8,340.00	8,216.00	5 Min: 4553
					10 Min: 4479
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4433
90.00	8,763.00	4,926.00	1.09		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
200,473.00	5,503.00		2,000.00		

e de la companya de l

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	2012-09-26 - Amended	
API #:	4709101211	

District: Unknown	m name: Robert P. & Shirley J. Turoczy	Operator Well			
Latitude: Feet South of 39	CATION: Elevation: 1420	Quadrangle: F	Rosemont		
Latitude: Feet South of 39 Peg. 31 Min. 28 Sec. Min. 28 Sec. Longitude Feet West of -80 Deg. 16 Min. 28 Sec. Company: EQT Production Company Company: EQT Plaza, Suite 1700 Casing & Used in drilling drilling Left in well Up Cu. Ft. 625 Liberty Avenue, Pittsburgh, PA 15222 20 40 40 40 134.52 Agent: Cecil Ray 13 3/8 944 944 944 918.68 Inspector: Brian Harris 9 5/8 2,490.13 2,490.13 999.6 Date Permit Issued: 2011-01-03 5 1/2 12,075.62 12,075.62 1,405.9 Date Well Work Commenced: 2011-09-07 Verbal Plugging: Not Applicable Date Permission granted on: Not Applicable Rotary Cable Rig Total Vertical Depth (ft): 7,375.95 Total Measured Depth (ft): 74,112,139,234,801 Salt Water Depth (ft): 883 Is coal being mined in area (N/Y)? N	District: Unknown	County: Tayle	or, WV		
Company: EQT Production Company Address: EQT Plaza, Suite 1700 Casing & Tubing Used in drilling Left in well up Cu. Ft. 625 Liberty Avenue, Pittsburgh, PA 15222 20 40 40 134.52 Agent: Cecil Ray 13 3/8 944 944 918.68 Inspector: Brian Harris 9 5/8 2,490.13 2,490.13 999.6 Date Permit Issued: 2011-01-03 5 1/2 12,075.62 12,075.62 1,405.9 Date Well Work Commenced: 2011-03-19 2011-09-07	Latitude:Feet South of ³⁹ Deg.	31 Min.	. 62 Sec.		
Address: EQT Plaza, Suite 1700 Casing & Tubing Used in drilling Left in well Cement fill up Cu. Ft. 625 Liberty Avenue, Pittsburgh, PA 15222 20 40 40 134.52 Agent: Cecil Ray 13 3/8 944 944 918.68 Inspector: Brian Harris 9 5/8 2,490.13 2,490.13 999.6 Date Permit Issued: 2011-03 5 1/2 12,075.62 12,075.62 1,405.9 Date Well Work Commenced: 2011-09-07 20	LongitudeFeet West of -80Deg.	16 NIII.	,		
Address: EQT Plaza, Suite 1700 Casing & Tubing Used in drilling Left in well Cement fill up Cu. Ft. 625 Liberty Avenue, Pittsburgh, PA 15222 20 40 40 134.52 Agent: Cecil Ray 13 3/8 944 944 918.68 Inspector: Brian Harris 9 5/8 2,490.13 2,490.13 999.6 Date Permit Issued: 2011-03 5 1/2 12,075.62 12,075.62 1,405.9 Date Well Work Commenced: 2011-09-07 20	EQT Production Company				·
Address: 625 Liberty Avenue, Pittsburgh, PA 15222 Agent: Cecil Ray Inspector: Brian Harris Date Permit Issued: 2011-01-03 Date Well Work Commenced: 2011-03-19 Date Well Work Completed: 2011-09-07 Verbal Plugging: Not Applicable Date Permission granted on: Not Applicable Rotary ✓ Cable Rig ✓ Total Vertical Depth (ft): 7,375.95 Total Measured Depth (ft): 12,098 Fresh Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N	Company.			Left in well	1
Agent: Cecil Ray Inspector: Brian Harris Date Permit Issued: 2011-01-03 Date Well Work Commenced: 2011-09-07 Verbal Plugging: Not Applicable Poter Permission granted on: Not Applicable Rotary ✓ Cable Rig ✓ Total Vertical Depth (ft): 7,375.95 Total Measured Depth (ft): 74, 112, 139, 234, 801 Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N	Address:			40	
Inspector: Brian Harris 9 5/8 2,490.13 2,490.13 999.6 Date Permit Issued: 2011-01-03 5 1/2 12,075.62 1,405.9 Date Well Work Commenced: 2011-09-07 Verbal Plugging: Not Applicable Date Permission granted on: Not Applicable Rotary					
Inspector: Brian Harris 3-36 2,400.16 2,400.16 Date Permit Issued: 2011-01-03 5 1/2 12,075.62 12,075.62 1,405.9 Date Well Work Commenced: 2011-09-07 Verbal Plugging: Not Applicable Date Permission granted on: Not Applicable Rotary	Agent: Cecil Ray				
Date Permit Issued: 2011-03-19 Date Well Work Commenced: 2011-09-07 Verbal Plugging: Not Applicable Date Permission granted on: Not Applicable Rotary ✓ Cable Rig ✓ Total Vertical Depth (ft): 7,375.95 Total Measured Depth (ft): 12,098 Fresh Water Depth (ft.): 74, 112, 139, 234, 801 Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N					
Date Well Work Completed: 2011-09-07 Verbal Plugging: Not Applicable Date Permission granted on: Not Applicable Rotary ✓ Cable Rig ✓ Total Vertical Depth (ft): 7,375.95 Total Measured Depth (ft): 12,098 Fresh Water Depth (ft.): 74, 112, 139, 234, 801 Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N	Date Permit Issued: 2011-01-03	5 1/2	12,070.02	12,010.02	
Date Well Work Completed. Verbal Plugging: Not Applicable Date Permission granted on: Not Applicable Rotary ✓ Cable Rig ✓ Total Vertical Depth (ft): 7,375.95 Total Measured Depth (ft): 12,098 Fresh Water Depth (ft.): 74, 112, 139, 234, 801 Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N	Date Well Work Commenced: 2011-03-19		 		
Date Permission granted on: Not Applicable Rotary ✓ Cable Rig ✓ Total Vertical Depth (ft): 7,375.95 Total Measured Depth (ft): 12,098 Fresh Water Depth (ft.): 74, 112, 139, 234, 801 Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N	Date Well Work Completed.				
Rotary Cable Rig Total Vertical Depth (ft): 7,375.95 Total Measured Depth (ft): 12,098 Fresh Water Depth (ft.): 74, 112, 139, 234, 801 Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N	Verbai Plugging:	 	 	 	
Total Vertical Depth (ft): 7,375.95 Total Measured Depth (ft): 12,098 Fresh Water Depth (ft.): 74, 112, 139, 234, 801 Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N	Date I chinasion grantee on	 		 	
Total Measured Depth (ft): 12,098 Fresh Water Depth (ft.): 74, 112, 139, 234, 801 Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N		 		<u> </u>	
Fresh Water Depth (ft.): 74, 112, 139, 234, 801 Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N	Total Vertical Deput (10):		 	 	
Fresh Water Depth (ft.): 74, 112, 139, 234, 801 Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N	Total Measured Depth (ft): 12,098		 		
Salt Water Depth (ft.): 883 Is coal being mined in area (N/Y)? N	Fresh Water Depth (ft.): 74, 112, 139, 234, 801		<u> </u>		
Is coal being mined in area (N/Y)? N Coal Depths (ft.): 466, 677, 790	Salt Water Depth (ft.): 883		 	<u> </u>	
Coal Depths (ft.): 466, 677, 790	Is coal being mined in area (N/Y)? N	 			
	Coal Depths (ft.): 466, 677, 790				+
Void(s) encountered (N/Y) Depth(s) N	Void(s) encountered (N/Y) Depth(s) N		<u> </u>		
	Floutening to matter				
Producing formation Marcellus Pay zone depth (ft) Bbl/d			Bb1/d		
Gas: Initial open flowMCF/d Oil: Initial open flowBbl/d	Time of open flow between initial and final tests_	Hou			
Gas: Initial open flow MCF/d Oil: Initial open flow Bbl/d Final open flow 4,128 MCF/d Final open flow Bbl/d Time of open flow between initial and final tests Hours	Static rock Pressure 780 psig (surface pressure)	afterHo	ours		ومرية المحتجيجين
Gas: Initial open flow MCF/d Oil: Initial open flow Bbl/d Final open flow 4,128 MCF/d Final open flow Bbl/d Time of open flow between initial and final tests Hours	Pay:	zone depth (ft)	_	ou C	15 5
Gas: Initial open flow MCF/d Oil: Initial open flow Bbl/d Final open flow 4,128 MCF/d Final open flow Bbl/d Time of open flow between initial and final tests Hours	Scond producing restaura			The first	.a
Gas: Initial open flow MCF/d Oil: Initial open flow Bbl/d Final open flow 4,128 MCF/d Final open flow Bbl/d Time of open flow between initial and final tests Hours	Final open flow MCF/d Final open fl	ow			illis no
Gas: Initial open flow MCF/d Oil: Initial open flow Bbl/d Final open flow 4,128 MCF/d Final open flow Bbl/d Time of open flow between initial and final tests Hours	m: c a between initial and final tests		•	~	(C) (D)
Gas: Initial open flow MCF/d Oil: Initial open flow Bbl/d Final open flow 4,128 MCF/d Final open flow Bbl/d Time of open flow between initial and final tests Hours Static rock Pressure 780 psig (surface pressure) after Hours Second producing formation Pay zone depth (ft) Gas: Initial open flow MCF/d Oil: Initial open flow Bbl/d	Time of open flow between illitial and final tests				

2012-09-26 Date

Were core samples taken? Yes_X No	Were cut	tings caught dur	ing drilling? Yes <u>X</u>	No
Were Electrical, Mechanical or Geophysical logs recorded or	n this well? If ye	es, please list Ge	eophysical	
NOTE: IN THE AREA BELOW PUT THE FOL FRACTURING OR STIMULATING, PHYSICAL CHA DETAILED GEOLOGICAL RECORD OF THE TO COAL ENCOUNTERED BY THE WELLBORE FROM	NGE, ETC. 2). PS AND BOT	THE WELL L TOMS OF AL	OG WHICH IS A S L FORMATIONS	SYSTEMA
Perforated Intervals, Fracturing, or Stimulating:				
See Attachment				
				
			•	
Plug Back Details Including Plug Type and Depth(s): 2418	3/2468 (Clas	s A) Cubic F	eet: 113.05,	
2390/2240 (Class A) Cubic Feet: 113.05, 6	,252/6,752	9 (Class H)	Cubic Feet: 16	9.29
Formations Encountered: Top	Depth	1	Bottom	Depth
Surface:				
Fill 330 / 466.00 Coal 466 / 468.00 Siltstone 4	···			
Coal 790 / 792.00 Sand 792 / 950.00 Sand 950 / 13				
Weir Sand 1604.9 / 1872.80 50 Foot 1872.8 / 1945	.70 30 Foot	1945.7 / 2111	1.70 Gordon 211	1.7 / 2219
Fourth Sand 2219.6 / 2408.50 Fifth Sand 2408.5 / 248	.			
Benson 3390.6 / 4406.90 Elks 4406.9 / 4477.80	Sonyea 447	7.8 / 6703.60	Middlesex 6703	3.6 / 7007
Genesee 7007.8 / 7123.20 Geneseo 7123.2 / 724	14.20 Tully 72	244.2 / 7287.3	30 Hamilton 728	7.3 / 734
Marcellus 7344.9 / 7375.0				
		 		
				Althorne Control
				or a second

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
1	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
6/18/2011	11793 - 12027		6,935.00	8,100.00	5 Min: 4824
					10 Min: 4678
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4595
90.00	8,390.00	5,776.00	1.2		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
402,739.00	10,289.00		2,000.00		
Stage	Formation	Frac Type			
2	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
6/19/2011	11493 - 11735		7,997.00	8,000.00	5 Min: 5831
					10 Min: 5681
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5385
100.00	8,300.00	6,026.00	1.23	,	
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
403,133.00	11,122.00		2,000.00		
Stage	Formation	Frac Type			
3	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
6/20/2011	11193 - 11435	•	7,584.00	8,153.00	5 Min: 5896
•					10 Min: 5788
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5607
101.00	8,486.00	6,063.00	1.24		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal	:	- 34. ^{特置}
394,525.00	8,524.00		2,000.00		

.

Summary	Treatment	Well	Attachment	Completion	EQT WR-35
•			Frac Type	Formation	Stage
			Slickwater	MARCELLUS	4
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5213	8,319.00	7,828.00		10893 - 11135	6/20/2011
10 Min: 5109					
15 Min: 4993		Frac Gradient	ISIP	Max Press PSI	Avg Rate
		1.18	5,582.00	8,980.00	92.00
		Acid-Gal	SCF N2	Water-bbl	Sand Proppant
		2,000.00		16,298.00	373,580.00
			Frac Type	Formation	Stage
			Slickwater	MARCELLUS	5
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5126	7,243.00	6,493.00	•	10593 - 10835	6/23/2011
10 Min: 4895					
15 Min: 4895		Frac Gradient	ISIP	Max Press PSI	Avg Rate
		1.2	5,777.00	8,101.00	98.00
-		Acid-Gal	SCF N2	Water-bbl	Sand Proppant
		2,000.00		11,345.00	405,100.00
		-	Frac Type	Formation	Stage
			Slickwater	MARCELLUS	6
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 6093	8,275.00	7,522.00	•	10293 - 10535	6/23/2011
10 Min: 5979					
15 Min: 5849		Frac Gradient	ISIP	Max Press PSI	Avg Rate
es ^{t est}		1.27	6,283.00	8,509.00	97.00
		Acid-Gal	SCF N2	Water-bbl	Sand Proppant
		2,000.00		10,923.00	395,455.00

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			•
7	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
6/23/2011	9993 - 10235		7,730.00	8,230.00	5 Min: 5516
					10 Min: 5334
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5127
97.00	8,650.00	5,644.00	1.22		
Sand Proppant	Water-bbl	SCF N2	Acid-Gai		
404,437.00	12,525.00		2,000.00		
Stage	Formation	Frac Type			
8	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
6/24/2011	9693 - 9935		7,033.00	8,130.00	5 Min: 5705
					10 Min: 5464
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5334
98.00	8,560.00	5,883.00	1.22		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
404,208.00	12,198.00		2,000.00		
Stage	Formation	Frac Type			
9	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
6/24/2011	9393 - 9635		6,650.00	7,541.00	5 Min: 5792
					10 Min: 5653
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5553
91.00	8,002.00	6,170.00	1.25		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
407,500.00	11,484.00		2,000.00		

, v.**

Summary	Treatment	Well	Attachment	Completion	EQT WR-35
			Frac Type	Formation	Stage
			Slickwater	MARCELLUS	10
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5867	7,995.00	7,405.00		9066 - 9148	6/29/2011
10 Min: 5734					
15 Min: 5633		Frac Gradient	ISIP	Max Press PSI	Avg Rate
		1.39	6,212.00	9,145.00	96.00
		Acid-Gal	SCF N2	Water-bbl	Sand Proppant
		2,000.00		10,294.00	404,879.00
			Frac Type	Formation	Stage
			Slickwater	MARCELLUS	11
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5634	7,914.00	7,461.00	# OI pelis	8766 - 9008	6/30/2011
0 Willia 0004	1,014.00			0,00	0/00/2011
10 Min: 5449					
15 Min: 5359		Frac Gradient		Max Press PSI	Avg Rate
		1.24	6,043.00	8,840.00	97.00
		Acid-Gal	SCF N2	Water-bbl	Sand Proppant
		2,000.00		10,031.00	408,239.00
			Frac Type	Formation	Stage
			Slickwater	MARCELLUS	12
SIP Detail	ATP Psi	BD Press	# of perfs	From / To	Date
5 Min: 5551	6,992.00	6,992.00		8466 - 8708	7/1/2011
10 Min: 5482					
15 Min: 5323		Frac Gradient	ISIP	Max Press PSI	Avg Rate
oci vit		1.24	6,036.00	9,017.00	94.00
, 3 ,		Acid-Gal	SCF N2	Water-bbl	Sand Proppant
"U"		2,000.00		10,300.00	404,392.00

QT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
13	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/1/2011	8166 - 8408		7,165.00	7,920.00	5 Min: 5176
					10 Min: 4915
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4804
97.00	8,535.00	6,056.00	1.24		
and Proppant	Water-bbl	SCF N2	Acid-Gal		
404,834.00	10,867.00		2,000.00		
Stage	Formation	Frac Type			
14	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/1/2011	7866 - 8108		7,454.00	8,150.00	5 Min: 4977
					40.4% 40.47
Avg Rate	Max Press PSI	ISIP	Frac Gradient		10 Min: 4847 15 Min: 4760
103.00	8,722.00	5,560.00	1.29		
and Proppant	Water-bbl	SCF N2	Acid-Gal		
402,738.00	10,362.00	332	2,000.00		
Stage	Formation	Frac Type			
15	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
7/2/2011	7716 - 7838	o. poo	7,673.00	8,312.00	5 Min: 4727
					40.5%
Avg Rate	Max Press PSI	ISIP	Frac Gradient		10 Min: 4601 15 Min: 4503
81.00	9,436.00	5,284.00	1.25		
and Proppant	Water-bbl	SCF N2	Acid-Gal) (**
212,394.00	6,000.00	JJ. 112	2,000.00		

WR-35 Rev (9-11)

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	9/24/2012 - Amended	ê
API#:	4709101224	

ATION: Elevation: 1420 District: Unknown				
	_ Quadrangle: _l	Rosemont		
	County: Tayl	lor, WV		
Latitude: 39.304250 Feet South of Deg. Longitude -80.199381 Feet West of Deg.	Min	Sec		
Longitude 40.155551 Feet West ofDeg.	,IVIIII	sec	•	
Company: EQT Production Company		_		
Address: EQT Plaza, Suite 1700	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
625 Liberty Avenue, Pittsburgh, PA 15222	20	40	40	161.5
Agent: Cecil Ray	13 3/8	942.9	942.9	900
Inspector: Brian Harris	9 5/8	2,715.1	2,715.1	1,047.2
Date Permit Issued: 2011-04-01	5 1/2	11,435.6	11,435.6	1,256
Date Well Work Commenced: 2011-06-07				
Date Well Work Completed: 2011-11-12				
Verbal Plugging: N/A				
Date Permission granted on: N/A				
Rotary Cable Rig				
Total Vertical Depth (ft): 7,464.80				
Total Measured Depth (ft): 11,457				
Fresh Water Depth (ft.): 284, 829				
Salt Water Depth (ft.): None Reported				
Is coal being mined in area (N/Y)? N				
Coal Depths (ft.): 600, 795, 890				
Void(s) encountered (N/Y) Depth(s) N				

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

9/24/2012

Date

Were Electrical, Mechanical or Geophysica	al logs recorded on this well? If yes, please list Geophysical
FRACTURING OR STIMULATING, I DETAILED GEOLOGICAL RECORD	PUT THE FOLLOWING: 1). DETAILS OF PERFORATED INTERVAPHYSICAL CHANGE, ETC. 2). THE WELL LOG WHICH IS A SYSTEMAD OF THE TOPS AND BOTTOMS OF ALL FORMATIONS, INCLUDING LLBORE FROM SURFACE TO TOTAL DEPTH.
Perforated Intervals, Fracturing, or Stimula	iting:
See Attachment	
Plug Back Details Including Plug Type and	d Danth(s):
Plug Back Details including Plug Type and	1 Deptit(s):
Formations Encountered:	Top Depth / Bottom Depth
Surface:	Top Deptil / Bottom Deptil
0/40/40 - Clay 40/315/275 - Sandstone 315/	/320/5 - Red Rock 320/575/255 - Siltstone 575/595/20 - Red Rock 595/600/5 - Siltst
600/610/10-Coal 610/795/185-Siltstone	e 795/800/5-Coal 800/890/10-Siltstone 890/895/5-Coal 895/983/88-Sandst
Siltstone 983/1334/351 - Limestone	e 1334/1423/89 - Sandstone 1423/2459/1036
Sand 2459/ 3149.6/ 690 - Speechly	y 3149/3432/283 - Bradford 3432/3600/168
Balltown B 3600/3847/247 - Riley 3	3847/4459/612 - Benson 4459/6814/2355
Sonyea 6814/7175/361 - Middlese:	x 7175/7237/62 - Genesee 7237/7321/84
Geneseo 7321/7358/37 - Tully 735	58/7395/37 - Hamilton 7395/7465/70
	7491/7502/11 - Cherry Valley 7502

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
1	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SiP Detail
9/16/2011	11172 - 11414		6,924.00	8,000.00	5 Min: 4259
					10 Min:
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min:
95.30	9,241.00	4,549.00	1.04		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
242,620.00	8,005.00		2,000.00		
Stage	Formation	Frac Type			
2	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
9/17/2011	10872 - 11114		5,902.00	7,968.00	5 Min: 4654
					10 Min: 4421
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4284
92.40	8,945.00	5,254.00	1.14		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
404,280.00	10,151.00		2,000.00		
Stage	Formation	Frac Type			
3	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
9/17/2011	10572 - 10814		7,015.00	7,579.00	5 Min: 5075
					10 Min: 4888
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4728
96.20	8,645.00	5,260.00	1.14		
55.25					
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
4	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
9/17/2011	10272 - 10514	,	7,133.00	7,564.00	5 Min: 5483
					10 Min: 5329
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5224
94.10	8,971.00	5,825.00	1.21		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
339,778.00	10,187.00		2,000.00		
Stage	Formation	Frac Type			
5	MARCELLUS	Slickwater			
Doto	From / To	Hafasis	PD Press	ATP Psi	SIP Detail
Date 9/17/2011	From / To 9972 - 10214	# of perfs	BD Press 6,409.00	7,726.00	5 Min: 5299
9/1//2011	9972 - 10214		0,409.00	7,720.00	J Will 1. 3233
					10 Min: 5072
Avg Rate	Max Press PSI		Frac Gradient		15 Min: 4941
97.90	8,429.00	5,806.00	1.21		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
402,250.00	9,969.00		2,000.00		
Stage	Formation	Frac Type		,	
6	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
9/18/2011	9672 - 9914		7,725.00	7,892.00	5 Min: 5670
					10 Min: 5525
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5414
97.40	8,620.00	5,894.00	1.22		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
	TTOLE -UUI		a		

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
7	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
9/18/2011	9372 - 9614		7,301.00	7,987.00	5 Min: 5724
					40 Min. 5504
Avg Rate	Max Press PSI	ISIP	Frac Gradient		10 Min: 5581 15 Min: 5461
94.00	8,575.00	5,954.00	1.23		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
400,400.00	9,700.00		2,000.00		
Stage	Formation	Frac Type			
Staye 8	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
9/18/2011	9072 - 9314		8,887.00	8,246.00	5 Min: 5775
					10 Min: 5580
Avg Rate	Max Press PSI	ISIP	Frac Gradient	·	15 Min: 5430
89.00	8,967.00	6,286.00	1.27	,	
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
366,513.00	9,965.00		2,000.00		
Stage	Formation	Frac Type			
9	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
9/18/2011	8772 - 9014	•	9,303.00	7,871.00	5 Min: 5769
					10 Min: 5558
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5385
89.80	9,303.00	6,261.00	1.27		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
401,320.00	10,168.00		2,000.00		

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
10	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
9/18/2011	8472 - 8714		7,610.00	7,586.00	5 Min:
					40 Mim.
Avg Rate	Max Press PSI	ISIP	Frac Gradient		10 Min: 15 Min:
98.60	8,866.00	5,907.00	1.22		
Sand Brannant	Water-bbl	SCF N2	Acid-Gal		
Sand Proppant 401,350.00	10,390.00	SUF NZ	2,000.00		
			2,000.00		
Stage	Formation	Frac Type			
11	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
9/19/2011	8172 - 8354		6,888.00	7,442.00	5 Min: 5652
					10 Min: 5524
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5419
100.10	8,620.00	5,971.00	1.22	£	
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
399,820.00	9,852.00	33	2,000.00		
	-				
Stage	Formation	Frac Type	•		
12	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SIP Detail
9/19/2011	7872 - 8114		7,088.00	7,772.00	5 Min: 5578
					10 Min: 5471
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 5392
94.60	8,578.00	6,018.00	1.23		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		
400,630.00	9,819.00		2,000.00		

EQT WR-35	Completion	Attachment	Well	Treatment	Summary
Stage	Formation	Frac Type			
13	MARCELLUS	Slickwater			
Date	From / To	# of perfs	BD Press	ATP Psi	SiP Detail
9/19/2011	7722 - 7844		7,188.00	8,006.00	5 Min: 4646
					10 Min: 4595
Avg Rate	Max Press PSI	ISIP	Frac Gradient		15 Min: 4561
82.00	9,302.00	6,731.00	1.33		
Sand Proppant	Water-bbl	SCF N2	Acid-Gal		-
163,600.00	6,449.00	•	3,000.00		

WR-35 Rev (9-11)

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	9/4/12	
API #:	47-097-03758	

Farm name: Penn Virginia Operating	Operator Well No.: 511470					
LOCATION: Elevation: 2335'	Quadrangle:	Aiton				
District: Washington	County: Upsh	nir.				
Latitude: 3790' Feet South of 38° Deg.			c.			
		ı. <u>or</u> Se				
Company: EQT Production Company						
Address: 120 Professional Place,	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.		
Bridgeport, WV 26330						
Agent: Rex C. Ray	20"		34'			
Inspector: Bill Hatfield						
Date Permit Issued: 9/9/2010						
Date Well Work Commenced: 11/18/10						
Date Well Work Completed: 11/20/2010						
Verbal Plugging:						
Date Permission granted on:						
Rotary Cable Rig V						
Total Vertical Depth (ft): 65'						
Total Measured Depth (ft): 65'						
Fresh Water Depth (ft.): None reported						
Salt Water Depth (ft.): None reported						
Is coal being mined in area (N/Y)? N						
Coal Depths (ft.): None reported						
Void(s) encountered (N/Y) Depth(s) N						
OPEN FLOW DATA (If more than two producing formation Producing formation Pay 2	ons piease inclu zone depth (ft)		lata on separate s	heet)		
Gas: Initial open flowMCF/d Oil: Initial open fl				•		
Final open flow MCF/d Final open flow						
Time of open flow between initial and final tests						
Static rock Pressurepsig (surface pressure) af						
Second producing formation Pay zon	ne denth (ft)					
Gas: Initial open flow MCF/d Oil: Initial open fl		bl/d				
Final open flow MCF/d Final open flow						
Time of open flow between initial and final tests						
Static rock Pressure psig (surface pressure) af		irs				

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Signature

Date On High Spinotion

Were core samples taken? YesNo	Were cuttings caugh	ht during drilling? YesNo_X
Were Electrical, Mechanical or Geophysica	al logs recorded on this well? If yes, please li	istNone taken
DETAILED GEOLOGICAL RECORI	UT THE FOLLOWING: 1). DETAIL PHYSICAL CHANGE, ETC. 2). THE WE D OF THE TOPS AND BOTTOMS OF LLBORE FROM SURFACE TO TOTAL	LL LOG WHICH IS A SYSTEMATIC F ALL FORMATIONS INCLUDING
Perforated Intervals, Fracturing, or Stimulat	ting:	
No fracturing or Stimulation was cor	nducted	
Plug Back Details Including Plug Type and	Depth(s):	
Formations Encountered: Surface:	Top Depth /	Bottom Depth
Sand & Stone 0 - 65'		
		
· · · · · · · · · · · · · · · · · · ·		

OCT 23 2012

State of West Virginia Department of Environmental Protection Office of Oil and Gas

API No: 47-097-03768H Lease No: 63848

rm Name: WOODY, D.J.,	ET AL	Operator W	/ell No. AI	LT2AHS (40:	5940)			
OCATION: Elevation: 213	2'	Qu	Quadrangle: Alton					
District: Washington	1	— County	County: Upshur					
Latitude: 9,980		8 Deg. 50		00 Sec.				
								
Longitude: 9,400	reet west of:	0 Deg. 10		Sec.				
Company: CNX Gas Comp	pany LLC formerly C	onsol Gas Cor	npany					
<u> </u>		Casing and	Used in	Left in well	Cement fill			
		Tubing	drilling		up Cu. Ft.			
Address: P.O. Box 1248					up 00.20			
Jane Lew, WV 2	6378							
Agent: Richard K. Elsw	rick			<u> </u>				
Inspector: Bill Hatfield								
Date Permit Issued:	12/14/2010							
Date Well Work Commenced		30"	27'	27'	Grouted In			
Date Well Work Completed:	05/03/2012							
Verbal Plugging:		20"	40'	40'	125 sks			
Date Permission granted on:		 			ļ			
Rotary Cable	Rig X	13 3/8"	614'	614'	450 sks			
Total Vertical Depth (feet):	7203	0.5/0"	00001	00001	710 1			
Total Measured Depth (feet)		9 5/8"	2039'	2039'	710 sks			
Fresh Water Depth (ft.): 40',		7"	E E 1 A1	E 5 1 41	160 kkl-			
Salt Water Depth (ft.):	<u>N/A</u> N/Y)?: No	7"	5514'	5514'	168 bbls			
	N/ W 170 N/A							
		4 1 /0"	1.40001	1 40001	175 1.1.1			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D	-168',576'-579'	4 1/2"	14209'	14209'	175 bbls			
Is coal being mined in area () Coal Depths (ft.):90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation MAI Gas: Initial production —	-168',576'-579' Pepth(s) RCELLUS 759 M	CF/d	Pay zor	ne depth (ft) 7	122'-14209' * Bbl/d			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation MAI Gas: Initial production — Final open flow —	-168',576'-579' Pepth(s) RCELLUS 759 1776 M	CF/d CF/d	Pay zor	ne depth (ft) 7	122'-14209' * Bbl/c			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation MAI Gas: Initial production — Final open flow — Time of open flow be	-168',576'-579' Pepth(s) RCELLUS 759 M	CF/d CF/d ests	Pay zor Oil: Initia Fina	ne depth (ft) 7 l open flow l open flow	122'-14209' * Bbl/c * Bbl/c 259.5 Hour			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation MAI Gas: Initial production — Final open flow —	-168',576'-579' epth(s) RCELLUS 759 1776 Metween initial and final to	CF/d CF/d ests	Pay zor	ne depth (ft) 7 l open flow l open flow	122'-14209' * Bbl/c			
Coal Depths (ft.): 90'-93', 163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation MAI Gas: Initial production — Final open flow — Time of open flow be Initial Flowing Pressure — Second Producing formation	-168',576'-579' Pepth(s) RCELLUS 759 1776 Metween initial and final to 1556	CF/d CF/d estspsig	Pay zor Oil: Initia Fina (surface pre	ne depth (ft) _7 l open flow l open flow essure) after e depth (ft)	122'-14209' * Bbl/c * Bbl/c 259.5 Hour 803 Hour			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation MAI Gas: Initial production — Final open flow — Time of open flow be Initial Flowing Pressure Second Producing formation Gas: Initial open flow —	-168',576'-579' Pepth(s) RCELLUS 759 1776 Metween initial and final to 1556 Metween in the state of the	CF/d CF/d estspsig	Pay zon Oil: Initia Fina (surface pre	ne depth (ft) _7 l open flow l open flow essure) after e depth (ft) l open flow	122'-14209' * Bbl/d * Bbl/d 259.5 Hour 803 Hour			
Coal Depths (ft.): 90'-93', 163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation Final open flow Time of open flow be Initial Flowing Pressure Second Producing formation Gas: Initial open flow Final open flow Final open flow	-168',576'-579' Pepth(s) RCELLUS 759	CF/d CF/d estspsig	Pay zon Oil: Initia Fina (surface pre	ne depth (ft) _7 l open flow l open flow essure) after e depth (ft)	122'-14209' * Bbl/d * Bbl/d 803 Hour * Bbl/d * Bbl/d			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation Final open flow Time of open flow be Initial Flowing Pressure Second Producing formation Gas: Initial open flow Final open flow Final open flow	-168',576'-579' Pepth(s) RCELLUS 759 1776 Metween initial and final to 1556 Metween in the state of the	CF/d CF/d estspsig	Pay zon Oil: Initia Fina (surface pre	ne depth (ft) _7 l open flow l open flow essure) after e depth (ft) l open flow	122'-14209' * Bbl/d 259.5 Hour 803 Hour * Bbl/d * Bbl/d * Bbl/d			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation	-168',576'-579' Pepth(s) RCELLUS -759 M -1776 M Petween initial and final to 1556 ** ** ** ** ** ** ** ** **	CF/d CF/d estspsig	Pay zon Oil: Initia Fina (surface pre	e depth (ft) _7 l open flow l open flow essure) after e depth (ft) l open flow l open flow	122'-14209' * Bbl/d * Bbl/d 803 Hour * Bbl/d * Bbl/d			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation	Pepth(s) RCELLUS 759 1776 Metween initial and final to 1556 Metween initial and final to 1556 Metween initial and final to 1556	CF/d CF/d estspsig ACF/d ACF/d stspsig	Pay zon Oil: Initia Fina (surface pre	e depth (ft) _7 l open flow l open flow essure) after e depth (ft) open flow l open flow ssure) after	* Bbl/d * Bbl/d * Bbl/d * Bbl/d * Bbl/d * Bbl/d * Hour * Hour			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation MAI Gas: Initial production — Final open flow — Time of open flow be Initial Flowing Pressure Second Producing formation Gas: Initial open flow — Final open flow — Final open flow — Final open flow be Static rock Pressure COMMINGLED WITH PRE Certify under penalty of law that I hav	CVIOUS FORMATION e personally examined and an	CF/d CF/d estspsig ACF/d ACF/d stspsig S n familiar with the i	Pay zon Oil: Initia Fina (surface pre Oil: Initial Final (surface pres	e depth (ft) _7 l open flow l open flow essure) after e depth (ft) open flow soure) after mitted on this doc	* Bbl/d * Bbl/d * Bbl/d * Bbl/d * Bbl/d * Bbl/d * Hour * Hour			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation	RCELLUS 759 1776 Metween initial and final to 1556 ** ** ** ** ** ** ** ** **	CF/d CF/d estspsig ACF/d ACF/d stspsig S n familiar with the i	Pay zon Oil: Initia Fina (surface pre	e depth (ft) _7 l open flow l open flow essure) after e depth (ft) open flow ssure) after mitted on this document the information	* Bbl/d * Bbl/d * Bbl/d * Bbl/d * Bbl/d * Bbl/d * Hour * Hour			
Coal Depths (ft.): 90'-93',163' Void(s) encountered (N/Y) D OPEN FLOW DATA Producing formation MAI Gas: Initial production — Final open flow — Time of open flow be Initial Flowing Pressure — Second Producing formation Gas: Initial open flow — Final open flow — Final open flow — Final open flow be Static rock Pressure — COMMINGLED WITH PRE Certify under penalty of law that I hav ne attachments and that, based on my	RCELLUS 759 1776 Metween initial and final to 1556 ** ** ** ** ** ** ** ** **	CF/d CF/d estspsig ACF/d ACF/d stspsig S n familiar with the i	Pay zon Oil: Initia Fina (surface pre	e depth (ft) _7 l open flow l open flow essure) after e depth (ft) open flow soure) after mitted on this doc	* Bbl/d * Bbl/d * Bbl/d * Bbl/d * Bbl/d * Bbl/d * Hour * Hour			

WR-35 Rev (5-01) Page 2 of 2

WELL: ALT2AHS (405940)

rage 2 of .	2											
Were core	samples take	en?	Yes	No <u>X</u>	We	re cuttings ca	ight dur	ing dri	illing?	Yes X	_No	
Were	Electrical		_Mechani	cal, X	or Geo	physical logs 1	ecorded	on thi	s well?			
PHYSICAL	CHANGE, ETC	. 2). 1	THE WELL	LOG WHICH	IS A SY	AILS OF PERFO STEMATIC DET TERED BY THE	AILED G	EOLOG	CICAL RE	CORD OF	THE TO	PS AND
PERFOR.	ATED INTE	RVAL	S, FRAC	TURING, O	R STI	MULATING:						
3/20/2012	FRACED STAG	E 1/25.	PERFED M	ARCELLUS @	13954'-	14076' W/ 15 SHO	OTS. SAN	D 89,300	#, AVG PS	I 8689, AV	/G RATE	37.9.
3/21/2012	FRACED STAG	E 2/25	. PERFED M	ARCELLUS @	13775'-	13897' W/ 10 SHO	OTS. SAN	D 99,600	#, AVG PS	I 8684, AV	/G RATE	37.6.
4/12/2012	FRACED STAG	E 3/25	. PERFED M	ARCELLUS @	13595'-	13717' W/ 10 SHO	OTS. SAN	D 130,20)0#, AVG P	SI 8353, A	VG RAT	E 33.0.
4/18/2012	FRACED STAG	E 4/25	. PERFED M	ARCELLUS @	13415'-	13537' W/ 10 SHO	OTS. SAN	D 242,20	00#, AVG P	SI 8565, A	VG RAT	E 53.0.
4/18/2012	FRACED STAG	E 5/25	. PERFED M	ARCELLUS @	13235'-	13357' W/ 10 SHO	OTS. SAN	D 258,40)0#, AVG P	SI 8432, A	VG RAT	E 59.1.
						13177' W/ 10 SHO						
						12997' W/ 10 SHO						
4/21/2012	FRACED STAG	E 8/25	. PERFED M	ARCELLUS @	12695'-	12817' W/ 10 SHO	OTS. SAN	D 262,10	00#, AVG P	SI 8191, A	VG RAT	E 56.0.
4/22/2012	FRACED STAG	E 9/25	. PERFED M	ARCELLUS @	12455'-	12637' W/ 9 SHO	TS. SAND	340,100)#, AVG PS	SI 8486, AV	/G RATE	61.2.
4/22/2012	FRACED STAG	E 10/2	5. PERFED	MARCELLUS	@ 12215	'-12397' W/ 9 SHO	OTS. SAN	D 354,80	00#, AVG	PSI 8419, A	AVG RAT	E 63.0
4/23/2012	FRACED STAG	E 11/2	5. PERFED	MARCELLUS	@ 11975	'-12157' W/ 9 SHO	OTS. SAN	D 345,10	00#, AVG P	SI 8365, A	VG RAT	E 53.3.
4/25/2012	FRACED STAG	E 12/2	5. PERFED	MARCELLUS	@ 11735	'-11917' W/ 9 SHO	OTS. SAN	D 350,70	00#, AVG P	SI 8489, A	VG RAT	E 61.9.
4/25/2012	FRACED STAG	E 13/2	5. PERFED	MARCELLUS	@ 11495	'-11677' W/ 9 SHO	OTS. SAN	D 337,00	00#, AVG P	SI 8484, A	VG RAT	E 58.0.
4/26/2012	FRACED STAC	E 14/2	5. PERFED	MARCELLUS	@ 11255	'-11437' W/ 9 SHO	OTS. SAN	D 340,70	00#, AVG P	SI 8284, A	VG RAT	E 57.9.
4/27/2012	FRACED STAC	E 15/2	5. PERFED	MARCELLUS	@ 11015	'-11197' W/ 9 SHO	OTS. SAN	D 339,30	00#, AVG F	SI 8360, A	VG RAT	E 63.8.
4/28/2012	FRACED STAC	E 16/2	5. PERFED	MARCELLUS	@ 10775	'-10957' W/ 9 SH	OTS. SAN	D 338,10	00#, AVG F	PSI 8574, A	VG RAT	E 62.5.
4/28/2012	FRACED STAC	E 17/2	5. PERFED	MARCELLUS	@ 10535	'-10717' W/ 9 SH	OTS. SAN	D 342,20	00#, AVG F	PSI 8301, A	VG RAT	E 64.7.
4/28/2012	FRACED STAC	SE 18/2	5. PERFED	MARCELLUS	@ 10235	'-10477' W/ 8 SH	OTS. SAN	D 427,80	00#, AVG F	PSI 8553, A	VG RAT	E 71.3.
4/29/2012	FRACED STAC	E 19/2	5. PERFED	MARCELLUS	@ 9935'-	-10177' W/ 8 SHO	TS. SAND	428,500)#, AVG PS	SI 8384, AV	VG RATE	76.0.
4/30/2012	FRACED STAC	SE 20/2	5. PERFED	MARCELLUS	@ 9635'-	9877' W/ 8 SHOT	S. SAND	429,400	ŧ, AVG PSI	8554, AV	G RATE	78.3.
4/30/2012	FRACED STAC	E 21/2	5. PERFED	MARCELLUS	@ 9335'-	9577' W/ 8 SHOT	S. SAND	425,500	#, AVG PSI	8402, AV	G RATE	77.1.
4/30/2012						-9277' W/ 8 SHOT						
5/1/2012	FRACED STAC	SE 23/2	5. PERFED	MARCELLUS	@ 8735'-	-8977' W/ 8 SHOT	S. SAND	433,500	#, AVG PSI	8061, AV	G RATE	81.0.
5/3/2012						-8677' W/ 8 SHOT						
5/3/2012				MARCELLUS	@ 8135'-	-8377' W/ 8 SHOT	S. SAND	428,600	#, AVG PSI	17964, AV	G RATE	81.7.
<u>FORMAT</u>	TONS ENC	DUNT	ERED:									
Fill	0	10	Sand/Shale	10	21	Clay	21	31	Sand/Shale			46
Sand	46	90	Coal	90	93	Shale	93	120	Sand/Shale		20	125
Sand	125	155	Sand/Shale	155	163	Coal	163	168	Sand/Shale		68 	172
Sand	172	430	Sand/Shale	430	455	Sand	455	576				579
Sand/Shale	579	622	Sand	622	670	Sand/Shale	670	783	Shale		83	801
Shale/Sand	801	1000	RedRock	1000	1031	Shale/Sand	1031	1080	Sand		080	1270
Sand/Shale	1270	1335	Sand	1335	1370	Sand/Shale	1370	1430	Lime		430	1474
Injun	1474	1624	Shale/Sand	1624	1646	Fifty Foot	1646	1686	Shale/Sand		686	1886
RedRock	1886	1995	Sand	1995	2015	Shale/Sand	2015	2104	5th Sand		104	2125
Shale/Sand	2125	2182	Bayard	2182	2231	Sand/Shale	2231	3084	Sand		084	3110
Sand/Shale	3110	3490	Sand	3490	3550	Sand/Shale	3550	3800	Benson		800	3815
Shale	3815	3905	Sand/Shale	3905	3950	Sand	3950	3970	Shale	3	970	4000
Shale/Sand	4000	5550			041117					\neg		
	1				GAMMA	4				1		

	GAMMA RAY/		
	FORMATION		
#ALT2AHS (405940)	TOPS		47-097-03768H
	TOP	BASE	
FORMATIONS MEASURED IN TVD			
HOLE NOT LOGGED UNTIL KICKOFF POINT			
BURKETT	6977	7021	
TULLY	7021	7059	
HAMILTON	7059	7122	
MARCELLUS	7122		
LTD	14300		

State of West Virginia Department of Environmental Protection

DATE: OCT 1 0 2012

Lease No: 63848

API No: 47-097-03769H

Office of Oil and Gas Well Operator's Report of Well Work

Farm Name:	WOODY, D.J., ET	ΓAL	Operator W	Vell No. AI	T2BHS (405	5942)
LOCATION: Elevation: 2132' Quadrangle: Alton						
Dis	trict: Washington		County	: Upshur		
Latit	tude: 9,970	Feet South of:	38 Deg. 5	0 Min.	00 Sec.	
Longit	tude: 9,380	Feet West of:	30 Deg. 1	0 Min.	00 Sec.	
Company:	CNX Gas Compa	nv LLC formerly C	Consol Gas Cor	mpany		
<u>-</u>	<u></u>		Casing and		Left in well	Cement fill
			Tubing	drilling		up Cu. Ft.
Address:	P.O. Box 1248		Tubing	urning		up Cu. ru
Auuress:	Jane Lew, WV 263	178	-			-
Agent:	Richard K. Elswich					
Inspector:						
Date Perm		/13/2010				
	Work Commenced:	06/13/2011	30"	40'	40'	Grouted In
	Work Completed:	04/23/2012				
Verbal Plu			13 3/8"	628'	628'	540 sks
	ission granted on:					
Rotary	Cable	Rig X	9 5/8"	2024'	2024'	670 sks
Total Vert	ical Depth (feet):	7186				
Total Meas	sured Depth (feet):	13870	7"	5496'	5496'	658 sks
Fresh Wat	er Depth (ft.): 40', 1	57', 311'				
		V/A	4 1/2"	13840'	13840'	672 sks
	ng mined in area (N/					
Coal Deptl	hs (ft.): 90'-93',163'-1	68',576'-579'				
Void(s) end	countered (N/Y) Dep	oth(s)			<u> </u>	
	OW DATA	er i i ie		P2v 701	ne depth (ft) <u>7</u>	115'-13840'
	ng formation MARC		(OE/I		lo deput (10) _/	* Bbl/d
	tial production —		ICF/d		- —	
	nal open flow		ICF/d	rina	l open flow	
	me of open flow bety	1312			```	110415
Initial F	lowing Pressure	1312	psig	g (surface pre	essure) after	483.50 Hours
				_		
	Producing formation_		<u> </u>		e depth (ft)	
	ial open flow		MCF/d	Oil: Initia		*Bbl/d
Fir	nal open flow	*]	MCF/d	Fina	l open flow	*Bbl/d
Ti	me of open flow betw	een initial and final t	ests			* Hours
	ck Pressure	*		(surface pre-	ssure) after	* Hours
* COMMIN	GLED WITH PREV	TOUS FORMATION	VS			10
I certify under p	penalty of law that I have p	personally examined and a	m familiar with the	information sub	mitted on this doc	ument and all
	s and that, based on my inc is true, accurate, and com		immediately respons	sidle for obtaini	ng the information	I Delieve (nat
	K.K.	Phomy2		102	<u> </u>	

Date

Signature

WR-	-35		
Rev	(5-	01)
_	_	•	-

WELL: ALT2BHS (405942)

Page 2 of	2											
Were core	samples tak	en?	Yes	No_	<u>X</u>	We	re cutting	s caught du	ring dr	illing? Yo	es_X_No_	
Were	_ Electrical		_Mechani	cal ,_	X	_or Ge o	physical l	ogs recorded	d on thi	is well?		
PHYSICAL	THE AREA BE CHANGE, ETO OF ALL FORM	C. 2). 1	THE WELL	LOG '	WHIC	H IS A SY	STEMATIC	DETAILED (GEOLO	GICAL RECO	RD OF THE	
PERFOR	ATED INTE	RVAI	S. FRAC	TUR	ING.	OR STI	MULATI	NG:				
4/5/2012	FRACED STAC								ND 173,6	00#, AVG PSI	8550, AVG RA	ATE 53.9.
4/10/2012	FRACED STAC	GE 2/24	. PERFED M	1ARCE	ELLUS	@ 13483'-	-13605' W/ 1	0 SHOTS. SAN	ND 227,5	00#, AVG PSI	8263, AVG RA	ATE 50.7.
4/10/2012	FRACED STAC	GE 3/24	. PERFED M	IARCI	ELLUS	@ 13303'-	-13425' W/ 1	O SHOTS. SAN	ND 210,0	00#, AVG PSI	8441, AVG RA	ATE 49.7.
4/11/2012	FRACED STAC								•		•	
4/12/2012	FRACED STAC											
4/13/2012	FRACED STAC											
4/14/2012	FRACED STAC											
4/14/2012	FRACED STAC											
4/14/2012 4/14/2012	FRACED STAC									•		
4/14/2012	FRACED STAC											
4/15/2012								9 SHOTS. SAN	•	•	•	
4/15/2012								9 SHOTS. SAN	•	•	•	
4/16/2012								9 SHOTS. SAN				
4/16/2012	FRACED STAC	GE 15/2	4. PERFED	MARC	CELLUS	S @ 10723	8'-10905' W/	9 SHOTS. SAN	ND 283,7	00#, AVG PSI	8245, AVG RA	ATE 59.6.
4/16/2012	FRACED STA	GE 16/2	4. PERFED	MARC	CELLUS	S @ 10483	3'-10665' W/	9 SHOTS. SAN	ND 257,5	00#, AVG PSI	8428, AVG R	ATE 59.0.
4/17/2012	FRACED STA	GE 17/2	4. PERFED	MARC	CELLU	S @ 10250)'-10425' W/	9 SHOTS. SAN	ND 284,0	00#, AVG PSI	8274, AVG R	ATE 61.9.
4/18/2012	FRACED STA	GE 18/2	4. PERFED	MARC	CELLU	S @ 9943'	-10185' W/ 8	SHOTS. SAN	D 350,50	0#, AVG PSI 8	398, AVG RA	TE 71.0.
4/18/2012	FRACED STA	GE 19/2	4. PERFED	MARC	CELLU	S @ 9645'	-9883' W/ 8	SHOTS. SAND	325,500	#, AVG PSI 84	11, AVG RAT	E 69.9.
4/19/2012	FRACED STA	GE 20/2	4. PERFED	MARC	CELLU	S @ 9348'	-9585' W/ 8	SHOTS. SAND	354,500	#, AVG PSI 81	38, AVG RAT	E 58.1.
4/21/2012	FRACED STA	GE 21/2	4. PERFED	MARC	CELLU	S @ 9043'	-9285' W/ 8	SHOTS. SAND	348,400	#, AVG PSI 84	111, AVG RAT	E 70.8.
4/21/2012								SHOTS. SAND		-		
4/22/2012								SHOTS. SAND				
4/23/2012	FRACED STA	GE 24/2	4. PERFED	MARC	CELLU	S @ 8143'	-8385' W/ 8	SHOTS. SAND	434,500	#, AVG PSI 83	358, AVG RAT	E 65.5.
FORMAT	TIONS ENC	OUNT	TERED:									
Fill	0	10	Sand/Shale		10	21	Clay	21	31	Sand/Shale	31	46
Sand	46	90	Coal		90	93	Shale	93	120	Sand/Shale	120	125
Sand	125	155	Sand/Shale		155	163	Coal	163	168	Sand/Shale	168	172
Sand	172	430	Sand/Shale		430	455	Sand	455	576	Coal	576	579
Sand/Shale	579	622	Sand		622	670	Sand/Shale	670	783	Shale	783	801
Shale/Sand	801	1000	RedRock		1000	1031	Shale/Sand	1031	1080	Sand	1080	1270
Sand/Shale	1270	1335	Sand		1335	1370	Sand/Shale	1370	1430	Lime	1430	1474
Injun BedBook	1474	1624	Shale/Sand		1624	1646	Fifty Foot	1646	1686	Shale/Sand	1686	1886
RedRock Shale/Sand	1886 2125	1995 2182	Sand Bayard		1995 2182	2015 2231	Shale/Sand Sand/Shale	2015 2231	2104 3084	5th Sand Sand	2104 3084	2125 3110
Sand/Shale	3110	3490	Sand		3490	3550	Sand/Shale	3550	3800	Benson	3800	3815
Shale	3815	3905	Sand/Shale		3905	3950	Sand	3950	3970	Shale	3970	4000
Shale/Sand	4000	5550	3			3.23	*	3,20	22.3		37.0	
-												

	GAMMA		
	<u>RAY/</u>		
	FORMATION		
#ALT2BHS (405942)	TOPS		47-097-037 6 9H
	TOP	BASE	
FORMATIONS MEASURED IN TVD			
HOLE NOT LOGGED UNTIL KICKOFF POINT			
BURKETT	6974	7018	
TULLY	7018	7054	
HAMILTON	7054	7115	
MARCELLUS	7115		
LTD	13870		

State of West Virginia Department of Environmental Protection

DATE: 0CT 1 0 2012 API No: **47-097-03770H**

API No: **47-097-**Lease No: ⁶³⁸⁴⁸

Office of Oil and Gas

Well Operator's Report of Well Work

nrm Name: WOODY, D.J., E	T AL		Operator W	ell No. AI	LT2CHS (405	5944)
OCATION: Elevation: 2132	Qu	adrangle: A	lton			
District: Washington			County	: Upshur		
Latitude: 9,960	Feet South of:	38	_ Deg. 50		00 Sec.	
Longitude: 9,360	Feet West of:	80	Deg. 10			
Dongrado. 7,300						
Company: CNX Gas Comp	any LLC formerly	Con	sol Gas Con	npany		
			Casing and	Used in	Left in well	Cement fill
			Tubing	drilling		up Cu. Ft.
Address: P.O. Box 1248						
Jane Lew, WV 26	378					
Agent: Richard K. Elswie	ck				<u> </u>	•
Inspector: Bill Hatfield						
	2/13/2010					
Date Well Work Commenced:		\dashv	30"	40'	40'	Grouted In
Date Well Work Completed:	05/01/2012		12.0/0"	(10)	6101	576 -1
Verbal Plugging:			13 3/8"	612'	612'	576 sks
Date Permission granted on:	Rig X		9 5/8"	2004'	2004'	650 sks
Rotary Cable Total Vertical Depth (feet):	7183	\dashv	7 3/0	2004	2004	UJU SKS
Total Measured Depth (feet):			7"	5496'	5496'	744 sks
Fresh Water Depth (ft.): 40',		$\neg \uparrow$	<u>'</u>	3,70	1	
	N/A		4 1/2"	13473'	13473'	259 bbls
Is coal being mined in area (N	/ Y)?: No					
Coal Depths (ft.): 90'-93',163'-		Ī				
Void(s) encountered (N/Y) De	pth(s)					
Producing formation MARC Gas: Initial production Final open flow Time of open flow bet Initial Flowing Pressure	816 1872	MCF MCF l test	7/d s	Oil: Initia Fina		117'-13473' * Bbl/d * Bbl/d 744.5 Hours 977.5 Hours
Second Producing formation Gas: Initial open flow Final open flow Time of open flow betw Static rock Pressure * COMMINGLED WITH PREV I certify under penalty of law that I have	* /IOUS FORMATIO	ONS am fa	F/d F/d spsig (Pay zone Oil: Initial Final (surface pres	e depth (ft) l open flow l open flow ssure) after mitted on this docu	* Bbl/d * Bbl/d * Hours * Hours
the attachments and that, based on my in the information is true, accurate, and con		s imm	culately responsi	ote for obtainin	ng the information	i delieve that
RK.	EG IR			10 -	3-12	
	Signature				Date	

WR-35 Rev (5-01)

WELL: ALT2CHS (405944)

Page 2 of 2			
Were core samples taken?	Yes NoX_	Were cuttings caught during drilling?	Yes <u>X</u> No
Were Electrical	_Mechanical , _X _ or	Geophysical logs recorded on this well?	
NOTE: IN THE AREA BELOW	PUT THE FOLLOWING: 1).	DETAILS OF PERFORATED INTERVALS, FRA	CTURING OR STIMULATING,
PHYSICAL CHANGE, ETC. 2).	THE WELL LOG WHICH IS	A SYSTEMATIC DETAILED GEOLOGICAL RE	CORD OF THE TOPS AND
BOTTOMS OF ALL FORMATIO	NS, INCLUDING COAL ENG	COUNTERED BY THE WELLBORE FROM SURI	FACE TO TOTAL DEPTH.

PERFORATED INTERVALS, FRACTURING, OR STIMULATING:

4/5/201	2 FRACED STAGE 1/24. PERFED MARCELLUS @ 13284'-13403' W/ 15 SHOTS. SAND 253,000#, AVG PSI 8168, AVG RATE 57.8.	
4/10/20	12 FRACED STAGE 2/24. PERFED MARCELLUS @ 13105'-13227' W/ 10 SHOTS. SAND 121,200#, AVG PSI 8486, AVG RATE 53.2.	
4/10/20	12 FRACED STAGE 3/24. PERFED MARCELLUS @ 12925'-13047' W/ 10 SHOTS. SAND 210,500#, AVG PSI 8403, AVG RATE 53.6.	
4/10/20	12 FRACED STAGE 4/24. PERFED MARCELLUS @ 12750'-12867' W/ 10 SHOTS. SAND 219,300#, AVG PSI 8323, AVG RATE 55.7.	
4/12/20	12 FRACED STAGE 5/24. PERFED MARCELLUS @ 12570'-12687' W/ 10 SHOTS. SAND 176,500#, AVG PSI 8225, AVG RATE 52.4.	
4/17/20	12 FRACED STAGE 6/24. PERFED MARCELLUS @ 12380'-12507' W/ 10 SHOTS. SAND 214,200#, AVG PSI 8275, AVG RATE 59.4.	
4/18/20	12 FRACED STAGE 7/24. PERFED MARCELLUS @ 12214'-12327' W/ 10 SHOTS. SAND 208,600#, AVG PSI 8359, AVG RATE 58.3.	
4/18/20	12 FRACED STAGE 8/24. PERFED MARCELLUS @ 12025'-12147' W/ 10 SHOTS. SAND 211,800#, AVG PSI 8326, AVG RATE 61.3.	
4/19/20		
4/20/20	112 FRACED STAGE 10/24. PERFED MARCELLUS @ 11545'-11727' W/ 9 SHOTS. SAND 280,200#, AVG PSI 8558, AVG RATE 60.5.	
4/21/20	PRACED STAGE 11/24. PERFED MARCELLUS @ 11305'-11487' W/ 9 SHOTS. SAND 286,000#, AVG PSI 8164, AVG RATE 60.6.	
4/22/20		
4/23/20	PRACED STAGE 13/24. PERFED MARCELLUS @ 10825'-11007' W/ 9 SHOTS. SAND 238,700#, AVG PSI 8522, AVG RATE 61.9.	
4/25/20		
4/25/20	PRACED STAGE 15/24. PERFED MARCELLUS @ 10345'-10527' W/ 9 SHOTS. SAND 283,000#, AVG PSI 8273, AVG RATE 66.7.	
4/26/20	PRACED STAGE 16/24. PERFED MARCELLUS @ 10105'-10287' W/ 9 SHOTS. SAND 280,800#, AVG PSI 8499, AVG RATE 58.3.	
4/26/20	FRACED STAGE 17/24. PERFED MARCELLUS @ 9865'-10047' W/ 9 SHOTS. SAND 279,400#, AVG PSI 8560, AVG RATE 60.7.	
4/27/20	FRACED STAGE 18/24. PERFED MARCELLUS @ 9565'-9807' W/ 8 SHOTS. SAND 348,400#, AVG PSI 8542, AVG RATE 66.4.	
4/28/20	PRACED STAGE 19/24. PERFED MARCELLUS @ 9265'-9507' W/ 8 SHOTS. SAND 355,000#, AVG PSI 8530, AVG RATE 63.4.	
4/28/20	FRACED STAGE 20/24. PERFED MARCELLUS @ 8965'-9207' W/ 8 SHOTS. SAND 352,000#, AVG PSI 8461, AVG RATE 69.0.	
4/29/20	FRACED STAGE 21/24. PERFED MARCELLUS @ 8665'-8907' W/ 8 SHOTS. SAND 356,600#, AVG PSI 8351, AVG RATE 78.3.	
4/30/20	FRACED STAGE 22/24. PERFED MARCELLUS @ 8365'-8607' W/ 8 SHOTS. SAND 286,800#, AVG PSI 8569, AVG RATE 81.3.	
4/30/20	PRACED STAGE 23/24. PERFED MARCELLUS @ 8065'-8307' W/ 8 SHOTS. SAND 76,300#, AVG PSI 8016, AVG RATE 53.7.	
5/1/20	12 FRACED STAGE 24/24. PERFED MARCELLUS @ 7765'-8007' W/ 8 SHOTS. SAND 670,200#, AVG PSI 7898, AVG RATE 79.2.	

FORMATIONS ENCOUNTERED:

Fill	0	10	Sand/Shale	10	21	Clay	21	31	Sand/Shale	31	46
Sand	46	90	Coal	90	93	Shale	93	120	Sand/Shale	120	125
Sand	125	155	Sand/Shale	155	163	Coal	163	168	Sand/Shale	168	172
Sand	172	430	Sand/Shale	430	455	Sand	455	576	Coal	576	579
Sand/Shale	579	622	Sand	622	670	Sand/Shale	670	783	Shale	783	801
Shale/Sand	801	1000	RedRock	1000	1031	Shale/Sand	1031	1080	Sand	1080	1270
Sand/Shale	1270	1335	Sand	1335	1370	Sand/Shale	1370	1430	Lime	1430	1474
Injun	1474	1624	Shale/Sand	1624	1646	Fifty Foot	1646	1686	Shale/Sand	1686	1886
RedRock	1886	1995	Sand	1995	2015	Shale/Sand	2015	2104	5th Sand	2104	2125
Shale/Sand	2125	2182	Bayard	2182	2231	Sand/Shale	2231	3084	Sand	3084	3110
Sand/Shale	3110	3490	Sand	3490	3550	Sand/Shale	3550	3800	Benson	3800	3815
Shale	3815	3905	Sand/Shale	3905	3950	Sand	3950	3970	Shale	3970	4000
Shale/Sand	4000	5550									

	GAMMA RAY/ FORMATION		
#ALT2CHS (405944)	TOPS		47-097-03770H
	TOP	BASE	
FORMATIONS MEASURED IN TVD			
HOLE NOT LOGGED UNTIL KICKOFF POINT			
BURKETT	6975	7017	
TULLY	7018	7063	
HAMILTON	7064	7116	
MARCELLUS	7117		
LTD	13560		

State of West Virginia Department of Environmental Protection

DATE: OCT 1 0 2012

API No: 47-097-03771H

Office of Oil and Gas Well Operator's Report of Well Work

arm Name: WOODY, D.J., ET	AL	_Operator W	ell No. AL	T2DHS (405	5946)		
OCATION: Elevation: 2132'		Quadrangle: Alton County: Upshur					
District: Washington							
Latitude: 9,950 F	eet South of: 38	Deg. 50	Min.	00 Sec.			
	Feet West of: 80	~		00 Sec.			
201g.tado. 2,5.0							
Company: CNX Gas Company	LLC formerly Co	nsol Gas Cor	npany				
		Casing and	Used in	Left in well	Cement fill		
		Tubing	drilling		up Cu. Ft.		
Address: P.O. Box 1248							
Jane Lew, WV 26378	3						
Agent: Richard K. Elswick	_						
Inspector: Bill Hatfield							
	3/2010						
Date Well Work Commenced:	07/10/2011	30"	40'	40'	Grouted In		
Date Well Work Completed:	05/13/2012				ļ		
Verbal Plugging:		13 3/8"	632'	632'	500 sks		
Date Permission granted on:							
	Rig X	9 5/8"	2010'	2010'	650 sks		
Total Vertical Depth (feet): 71				ļ			
Total Measured Depth (feet): 13		7"	6321'	6321'	692 sks		
Fresh Water Depth (ft.): 40', 157			100 101	100.501	505 :		
Salt Water Depth (ft.): N/A		4 1/2"	13269'	13269'	597 sks		
Is coal being mined in area (N/Y)		ļ					
Coal Depths (ft.): 90'-93',163'-168 Void(s) encountered (N/Y) Depth			ļ	·			
Oas. Initial production	8872MC		Oil: Initia	ne depth (ft) <u>7</u> l open flow	* Bbl/d		
	312 MC		Fina	l open flow			
Time of open flow between					110.50 Hours		
Initial Flowing Pressure 2	2025	psig	g (surface pre	ssure) after	832.50 Hours		
Second Producing formation				e depth (ft)			
Gas: Initial open flow		CF/d	Oil: Initial	-	*Bbl/d		
Final open flow	* MO	CF/d	Final	open flow	* Bbl/d		
Time of open flow between	n initial and final test	is			* Hours		
Static rock Pressure			(surface pres	ssure) after	* Hours		
* COMMINGLED WITH PREVIO certify under penalty of law that I have pers the attachments and that, based on my inqui	onally examined and am i	familiar with the i			ument and all		
the information is true, accurate, and comple							
E .7.8	James			3-15			
Si	gnature]	Date	•		

WR-35 Rev (5-01)

WELL: ALT2DHS (405946)

Page 2 of	2											
Were core	e samples take	n?	Yes No	_X_	We	ere cuttings car	ıght duri	ng dr	illing?	Yes X	_No_	
Were	Electrical		_Mechanical	, <u>X</u>	or Geo	physical logs r	ecorded	on thi	is well?			
PHYSICAL	CHANGE, ETC.	. 2). 1	THE WELL LO	G WHICH	IS A SY	'AILS OF PERFO 'STEMATIC DET VTERED BY THE	AILED GI	EOLOG	GICAL RE	CORD O	F THE T	OPS AND
PERFOR	ATED INTER	VAI	S, FRACTU	RING, O	R STI	MULATING:						
5/5/2012						-13171' W/ 15 SHO	TS. SAND	240,10	00#, AVG P	'SI 8077,	AVG RA	TE 62.9.
5/5/2012	FRACED STAGE	E 2/25	. PERFED MAR	CELLUS @	12976	'-13076' W/ 10 SHC	OTS. SAND	212,20	00#, AVG P	SI 8006,	AVG RA	TE 59.1.
5/5/2012	FRACED STAGE	E 3/25.	. PERFED MAR	CELLUS @	12796	'-12914' W/ 10 SHO	OTS. SAND	207,60	00#, AVG P	'SI 8407,	AVG RA	TE 64.8.
5/5/2012	FRACED STAGE	E 4/25.	. PERFED MAR	CELLUS @	12620	'-12738' W/ 10 SHC	OTS. SAND	208,30	00#, AVG P	'SI 8529,	AVG RA	TE 64.5.
5/6/2012	FRACED STAGE	E 5/25	. PERFED MAR	CELLUS @	12436	'-12558' W/ 10 SHC	OTS. SAND	210,70	00#, AVG P	'SI 8350,	AVG RA	TE 61.6.
5/6/2012	FRACED STAGE	E 6/25	. PERFED MAR	CELLUS @	12256	'-12378' W/ 10 SHC	OTS. SANI	211,00	00#, AVG P	'SI 8404,	AVG RA	TE 65.2.
5/6/2012	FRACED STAGE	E 7/25	. PERFED MAR	CELLUS @	12076	'-12198' W/ 10 SHC	OTS. SAND	211,00	00#, AVG P	'SI 8292,	AVG RA	TE 70.7.
5/6/2012	FRACED STAG	E 8/25	. PERFED MAR	CELLUS @	₱ 11896'	'-12018' W/ 10 SHC	OTS. SAND	216,50	00#, AVG P	'SI 8323,	AVG RA	TE 69.9.
5/7/2012	FRACED STAGE	E 9/25	. PERFED MAR	CELLUS @	11656'	'-11838' W/ 9 SHO	rs. sand	279,700	0#, AVG PS	ii 8405, <i>A</i>	VG RAT	E 75.9.
5/7/2012	FRACED STAG	E 10/2	5. PERFED MA	RCELLUS	@ 11416	6'-11598' W/ 9 SHC	DTS. SANE	281,40	00#, AVG P	'SI 8443,	AVG RA	TE 75.7.
5/7/2012	FRACED STAGE	E 11/2	5. PERFED MA	RCELLUS	@ 11176	6'-11358' W/ 9 SHC	DTS. SANE	279,90	00#, AVG P	'SI 8154,	AVG RA	TE 74.5.
5/7/2012	FRACED STAGE	E 12/2	5. PERFED MA	RCELLUS	@ 10932	2'-11118' W/ 9 SHC	OTS. SAND	60,700	0#, AVG PS	iI 8481, <i>A</i>	VG RAT	E 74.6.
5/7/2012	FRACED STAG	E 13/2	5. PERFED MA	RCELLUS	@ 10696	6'-10878' W/ 9 SHC	OTS. SANE	311,20	00#, AVG P	'SI 8240,	AVG RA	TE 85.0.
5/8/2012	FRACED STAG	E 14/2	5. PERFED MA	RCELLUS	@ 10456	6'-10638' W/ 9 SHC	OTS. SANI	284,50	00#, AVG P	'SI 8370,	AVG RA	TE 83.3.
5/8/2012						6'-10398' W/ 9 SHC			•			
5/8/2012	FRACED STAG	E 16/2	5. PERFED MA	RCELLUS	@ 9976'	'-10158' W/ 9 SHO	rs. sand	237,90	0#, AVG PS	I 8441, <i>A</i>	AVG RAT	E 81.7.
5/9/2012						'-9918' W/ 9 SHOT						
5/9/2012						'-9678' W/ 8 SHOT						
5/9/2012						'-9376' W/ 8 SHOT						
5/10/2012						'-9078' W/ 8 SHOT						
5/10/2012						'-8778' W/ 8 SHOT						
5/10/2012						'-8478' W/ 8 SHOT						
5/13/2012						'-8178' W/ 8 SHOT						
5/13/2012						'-7882' W/ 8 SHOT						
5/13/2012	FRACED STAG	E 25/2	5. PERFED MA	RCELLUS	@ 7336'	-7576' W/ 8 SHOT	S. SAND 4	26,200	#, AVG PSI	7031, A	VG RATE	79.0.
FORMAT	<u> TIONS ENCO</u>	UNT	ERED:									
Fill	0	10	Sand/Shale	10	21	Clay	21	31	Sand/Shale		31	46
Sand	46	90	Coal	90	93	Shale	93	120	Sand/Shale		120	125
Sand	125	155	Sand/Shale	155	163	Coal	163	168	Sand/Shale		168	172
Sand	172	430	Sand/Shale	430	455	Sand	455	576	Coal		576	579
Sand/Shale	579	622	Sand	622	670	Sand/Shale	670	783	Shale		783	801
Shale/Sand	801	1000	RedRock	1000	1031	Shale/Sand	1031	1080	Sand		1080	1270
Sand/Shale	1270	1335	Sand	1335	1370	Sand/Shale	1370	1430	Lime		1430	1474
Injun		1624	Shale/Sand	1624	1646	Fifty Foot	1646	1686	Shale/Sand		1686	1886
RedRock	1886	1 9 95	Sand	1995	2015	Shale/Sand	2015	2104	5th Sand		2104	2125
Shale/Sand	2125	2182	Bayard	2182	2231	Sand/Shale	2231	3084	Sand		3084	3110
Sand/Shale			Sand	3490	3550	Sand/Shale	3550	3800	Benson		3800	3815
Shale		3905	Sand/Shale	3905	3950	Sand	3950	3970	Shale		3970	4000
Shale/Sand	4000 :	5550			CA1/114					_		
					~ *****							

	GAMMA		
	RAY.		
	FORMATION		į
#ALT2DHS (405946)	<u>TOPS</u>		47-097-03771H
	TOP	BASE	
FORMATIONS MEASURED IN TVD	1		
HOLE NOT LOGGED UNTIL KICKOFF POINT			
BURKETT	6978	7023	
TULLY	7024	7066	
HAMILTON	7067	7120	***
MARCELLUS	7121		
LTD	13335		

State of West Virginia

DATE: OCT 1 0 2012

Department of Environmental Protection

API No: 47-097-03772H Lease No: 63848

Office of Oil and Gas

Well Operator's Report arm Name: WOODY, D.J., ET AL COCATION: Elevation: 2132'	of Well Wo	rk		
			•	
OCATION: Elevation: 2132'	_Operator W	ell No. AL	T2EHS (405	5948)
	Qu	adrangle: A	lton	
District: Washington	County:	: Upshur		
Latitude: 9,940 Feet South of: 38	— Deg. 50	Min.	00 Sec.	
Longitude: 9,320 Feet West of: 80	Deg. 10	Min.	00 Sec.	
Company: CNX Gas Company LLC formerly Co			T -64 :	Coment #11
	Casing and	Used in	Left in well	Cement fill
	Tubing	drilling		up Cu. Ft.
Address: P.O. Box 1248				
Jane Lew, WV 26378				
Agent: Richard K. Elswick				
Inspector: Bill Hatfield				
Date Permit Issued: 12/13/2010				
Date Well Work Commenced: 07/30/2011	30"	40'	40'	Grouted In
Date Well Work Completed: 05/25/2012			<u> </u>	
Verbal Plugging:	13 3/8"	617.75'	617.75'	470 sks
Date Permission granted on:				
Rotary Cable Rig X	9 5/8"	2005.7	2005.7	620 sks
Total Vertical Depth (feet): 7193				
Total Measured Depth (feet): 13559	7"	6046'	6046'	684 sks
Fresh Water Depth (ft.): 40', 157', 311'				
Salt Water Depth (ft.): N/A	4 1/2"	13517'	13517'	605 sks
Is coal being mined in area (N/Y)?: No				
Coal Depths (ft.): 90'-93',163'-168',576'-579'	}	1		
Void(s) encountered (N/Y) Depth(s)				
OPEN FLOW DATA				-
Producing formation MARCELLUS			ne depth (ft) <u>7</u>	<u>119'-13517'</u>
Gas: Initial production80.64MC	F/d	Oil: Initia	l open flow	*Bbl/d
	F/d	Fina	l open flow	* Bbl/d
Final open flow 3888 MC			-	
Final open flow 3888 MC Time of open flow between initial and final tes	SLS			208.50 Hour

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that

Signature

WR.	-35		
Rev	(5-	01)
_	•	_	_

WELL: ALT2EHS (405948)

Page 2 of 2											
Were core s	amples tak	en?	Yes No _	<u>X</u>	We	re cuttings cau	ght durin	ıg dri	lling? Ye	s_ X _No_	
Were	Electrical		_Mechanical ,	<u>X</u> 01	Geo	physical logs re	corded o	n this	well?		
PHYSICAL C	HANGE, ETC	C. 2). T	THE WELL LOG	WHICH IS	A SY	AILS OF PERFOR STEMATIC DETA TERED BY THE V	AILED GE	OLOG	ICAL RECO	RD OF THE T	OPS AND
PERFORA'	TED INTE	RVAI	S, FRACTUR	ING, OR	STI	MULATING:					
						13468' W/ 15 SHOT	rs. sand	258,00	0#, AVG PSI 8	383, AVG RA	TE 73.1.
5/14/2012 F	RACED STAC	E 2/25	. PERFED MARC	ELLUS @ 1	3177'-	13299' W/ 10 SHOT	rs. sand	251,80	0#, AVG PSI 8	469, AVG RA	TE 64.0.
5/14/2012 F	RACED STAC	E 3/25	. PERFED MARC	ELLUS @ 1	2993'-	13119' W/ 10 SHOT	rs. sand	258,80	0#, AVG PSI 8	237, AVG RA	TE 69.6.
5/14/2012 F	RACED STAC	SE 4/25	. PERFED MARC	ELLUS @ 1	12817'-	12939' W/ 10 SHOT	rs. sand	259,00	0#, AVG PSI 8	242, AVG RA	TE 66.5.
5/15/2012 F	RACED STAC	E 5/25	. PERFED MARC	ELLUS @	12637'-	12759' W/ 10 SHOT	rs. sand	254,70	0#, AVG PSI 8	328, AVG RA	TE 68.1.
5/15/2012 F	RACED STAC	E 6/25	. PERFED MARC	ELLUS @ 1	12457'-	12579' W/ 10 SHOT	rs. sand	253,30	0#, AVG PSI 8	368, AVG RA	TE 67.5.
5/15/2012 F	RACED STAC	SE 7/25	. PERFED MARC	ELLUS @ 1	12277'-	12399' W/ 10 SHOT	rs. sand	260,70	0#, AVG PSI 8	223, AVG RA	TE 69.4.
5/15/2012 F	RACED STAC	E 8/25	. PERFED MARC	ELLUS @ 1	12097'-	12219' W/ 10 SHOT	rs. sand	253,90	0#, AVG PSI 8	005, AVG RA	TE 64.4.
						12039' W/ 9 SHOT:					
5/16/2012 F	RACED STAC	E 10/2	5. PERFED MAR	CELLUS @	11617	'-11794' W/ 9 SHO	rs. sand	279,30	0#, AVG PSI 8	253, AVG RA	TE 76.6.
5/16/2012 F	RACED STAC	E 11/2	5. PERFED MARG	CELLUS @	11379	'-11559' W/ 9 SHO	rs. sand	283,30	0#, AVG PSI 8	321, AVG RA	TE 77.2.
5/16/2012 F	RACED STAC	GE 12/2	5. PERFED MAR	CELLUS @	11137	'-11319' W/ 9 SHO	rs. sand	277,70	0#, AVG PSI 8	095, AVG RA	TE 74.3.
5/16/2012 F	RACED STAC	GE 13/2	5. PERFED MAR	CELLUS @	10897	'-11079' W/ 9 SHO	rs. sand	259,40	0#, AVG PSI 8	128, AVG RA	TE 72.9.
5/17/2012 F	RACED STAC	GE 14/2	5. PERFED MAR	CELLUS @	10657	'-10839' W/ 9 SHO	rs. sand	281,70	0#, AVG PSI 8	387, AVG RA	TE 77.8.
5/17/2012 F	RACED STAC	3E 15/2	5. PERFED MAR	CELLUS @	10417	'-10599' W/ 9 SHO	rs. sand	282,50	0#, AVG PSI 8	3412, AVG RA	TE 79.6.
5/17/2012 F	RACED STAC	3E 16/2	5. PERFED MAR	CELLUS @	10177	'-10359' W/ 9 SHO	rs. sand	282,20	0#, AVG PSI 8	513, AVG RA	TE 80.7.
5/17/2012 F	RACED STAC	GE 17/2	5. PERFED MARG	CELLUS @	9937'-	10119' W/ 9 SHOT	S. SAND 2	83,600	#, AVG PSI 82	73, AVG RAT	E 81.6.
5/18/2012 F	RACED STAC	3E 18/2	5. PERFED MAR	CELLUS @	9637'-	9879' W/ 8 SHOTS	. SAND 35	1,400#	, AVG PSI 825	4, AVG RATE	86.7.
5/18/2012 F	RACED STAC	GE 19/2	5. PERFED MARG	CELLUS @	9364'-	9579' W/ 8 SHOTS	. SAND 28	1,600#	, AVG PSI 814	2, AVG RATE	£ 78.7.
5/18/2012 F	RACED STAC	3E 20/2	5. PERFED MARG	CELLUS @	9037'-	9279' W/ 8 SHOTS	. SAND 32	4,900#	, AVG PSI 818	5, AVG RATE	84.5.
5/18/2012 F	RACED STAC	GE 21/2	5. PERFED MARG	CELLUS @	8740'-	8979' W/ 8 SHOTS	. SAND 35	3,700#	, AVG PSI 829	2, AVG RATE	85.1.
5/19/2012 F	RACED STAC	GE 22/2	5. PERFED MARG	CELLUS @	8437'-	8679' W/ 8 SHOTS	. SAND 32	8,900#	, AVG PSI 800	3, AVG RATE	E 86.0.
5/19/2012 F	RACED STAC	GE 23/2	5. PERFED MARG	CELLUS @	8137'-	8379' W/ 8 SHOTS	. SAND 33	4,500#	, AVG PSI 821	9, AVG RATE	93.3.
5/25/2012 F	RACED STAC	GE 24/2	5. PERFED MARG	CELLUS @	7840'-	8079' W/ 8 SHOTS	. SAND 34	9,100#	, AVG PSI 733	I, AVG RATE	86.6.
5/25/2012 F	RACED STAC	GE 25/2	5. PERFED MAR	CELLUS @	7537'-	7779' W/ 8 SHOTS	. SAND 39	5,300#	, AVG PSI 743	32, AVG RATE	88.9.
FORMATI	ONS ENC	DUNT	ERED:								
Fill	0	10	Sand/Shale	10	21	Clay	21	31	Sand/Shale	31	46
Sand	46	90	Coal	90	93	Shale	93	120	Sand/Shale	120	125
Sand	125	155	Sand/Shale	155	163	Coal	163	168	Sand/Shale	168	172
Sand	172	430	Sand/Shale	430	455	Sand	455	576	Coal	576	579
Sand/Shale	579	622	Sand	622	670	Sand/Shale	670	783	Shale	783	801
Shale/Sand	801	1000	RedRock	1000	1031	Shale/Sand	1031	1080	Sand	1080	1270
Sand/Shale	1270	1335	Sand	1335	1370	Sand/Shale	1370	1430	Lime	1430	1474
Injun	1474	1624	Shale/Sand	1624	1646	Fifty Foot	1646	1686	Shale/Sand	1686	1886
RedRock	1886	1995	Sand	1995	2015	Shale/Sand	2015	2104	5th Sand	2104	2125
Shale/Sand	2125	2182	Bayard	2182	2231	Sand/Shale	2231	3084	Sand	3084	3110
Sand/Shale	3110	3490	Sand	3490	3550	Sand/Shale	3550	3800	Benson	3800	3815
Shale	3815	3905	Sand/Shale	3905	3950	Sand	3950	3970	Shale	3970	4000
Shale/Sand	4000	5550									
			<u> </u>	G	AMMA						

	GAMMA RAY/		
	FORMATION		
#ALT2EHS (405948)	TOPS		47-097-03772H
	TOP	BASE	
FORMATIONS MEASURED IN TVD			
HOLE NOT LOGGED UNTIL KICKOFF POINT			
BURKETT	6969	7021	
TULLY	7022	7062	-
HAMILTON	7083	7118	
MARCELLUS	7119		
LTD	13559		

State of West Virginia Department of Environmental Protection

DATE: OCT 1 0 2012 API No: 47-097-03773H

Lease No: 63848

Office of Oil and Gas Well Operator's Report of Well Work

OCATION: Elevation: 2132		Qu	adrangle: <u>A</u>	lton	· · · · · · · · · · · · · · · · · · ·
District: Washington		County:	: Upshur		
Latitude: 9,930	Feet South of: 38	B Deg. 50	Min.	00 Sec.	
Longitude: 9,300	Feet West of: 80			00 Sec.	
Dongrado: 2,500					
Company: CNX Gas Comp	any LLC formerly Co	nsol Gas Con	npany		
• •		Casing and	Used in	Left in well	Cement fill
		Tubing	drilling		up Cu. Ft.
Address: P.O. Box 1248		Tubing	- CI IIIII		<u> </u>
Jane Lew, WV 20	6378	 			
Agent: Richard K. Elsw		<u> </u>			
Inspector: Bill Hatfield					
	12/13/2010				
Date Well Work Commenced		30"	40'	40'	Grouted In
Date Well Work Completed:					
Verbal Plugging:		13 3/8"	614'	614'	450 sks_
Date Permission granted on:					
Rotary Cable	Rig X	9 5/8"	2039'	2039'	710 sks
Total Vertical Depth (feet):	7195				
Total Measured Depth (feet):		5 1/2"	11472'	11472'	501 bbls
Fresh Water Depth (ft.): 40',		 			
Salt Water Depth (ft.):	N/A		ļ		
Is coal being mined in area (ļ	-	
Coal Depths (ft.): 90'-93',163'-					ļ
Void(s) encountered (N/Y) D	epth(s)	<u> </u>	ļ		ļ
Producing formation <u>MAI</u> Gas: Initial production —		CF/d		ne depth (ft) <u>7</u> al open flow	120'-11472' * Bbl/c
Final open flow Time of open flow be Initial Flowing Pressure	tween initial and final te	CF/d sts		al open flowessure) after	* Bbl/d 1280 Hour
Time of open flow be Initial Flowing Pressure Second Producing formation Gas: Initial open flow Final open flow	tween initial and final te	CF/d stspsig	g (surface pro Pay zon Oil: Initia Fina	e depth (ft) l open flow	* Bbl/d 1280 Hour 1388.5 Hour * Bbl/d * Bbl/d
Time of open flow be Initial Flowing Pressure Second Producing formation Gas: Initial open flow Final open flow	tween initial and final te 1525 1 · · · M * M	CF/d stspsig	g (surface progress) Pay zon Oil: Initia	e depth (ft) l open flow	* Bbl/d 1280 Hour 1388.5 Hour * Bbl/d * Bbl/d * Hour
Second Producing formation Gas: Initial open flow Final open flow Time of open flow bet Static rock Pressure * COMMINGLED WITH PRE	tween initial and final te 1525	CF/d stspsig ICF/d ICF/d stspsig S	Pay zon Oil: Initia Fina	e depth (ft) l open flow l open flow ssure) after	* Bbl/d 1280 Hour 1388.5 Hour * Bbl/d * Bbl/d * Hour * Hour
Second Producing formation Gas: Initial open flow Final open flow Time of open flow bet Static rock Pressure * COMMINGLED WITH PRE certify under penalty of law that I have	tween initial and final te 1525	CF/d stspsig ICF/d ICF/d stspsig familiar with the	Pay zon Oil: Initia Fina (surface pre	e depth (ft) l open flow l open flow ssure) after omitted on this doc	* Bbl/d 1280 Hour 1388.5 Hour * Bbl/d * Bbl/d * Hour * Hour
Second Producing formation Gas: Initial open flow Final open flow Time of open flow bet Static rock Pressure * COMMINGLED WITH PRE certify under penalty of law that I have the attachments and that, based on my	tween initial and final te 1525 * M * M tween initial and final te * * ** * * * * * * * * * *	CF/d stspsig ICF/d ICF/d stspsig familiar with the	Pay zon Oil: Initia Fina (surface pre	e depth (ft) l open flow l open flow ssure) after omitted on this doc	* Bbl/d 1280 Hour 1388.5 Hour * Bbl/d * Bbl/d * Hour * Hour
Second Producing formation Gas: Initial open flow Final open flow Time of open flow bet Static rock Pressure * COMMINGLED WITH PRE certify under penalty of law that I have the attachments and that, based on my	* M * M * Ween initial and final test * WIOUS FORMATIONS e personally examined and am inquiry of those individuals imporplete	CF/d stspsig ICF/d ICF/d stspsig familiar with the	Pay zon Oil: Initia Fina (surface pre	e depth (ft) l open flow l open flow ssure) after omitted on this doo ng the information	* Bbl/d 1280 Hour 1388.5 Hour * Bbl/d * Bbl/d * Hour * Hour
Time of open flow be Initial Flowing Pressure Second Producing formation Gas: Initial open flow Final open flow Time of open flow between the producing formation open flow between the producing formation open flow between the producing flow between the producin	tween initial and final te 1525 * M * M tween initial and final te * * ** * * * * * * * * * *	CF/d stspsig ICF/d ICF/d stspsig familiar with the	Pay zon Oil: Initia Fina (surface pre information sul	e depth (ft) l open flow l open flow ssure) after omitted on this doc	* Bbl/d 1280 Hour 1388.5 Hour * Bbl/d * Bbl/d * Hour * Hour

WR-35
Rev (5-01)
Page 2 of

AT.T2FHS (405950)

Page 2 of 2	2			WELI	_: A	L12FH3 (4	•03730)					
Were core	samples tal	en?	Yes N	o <u>X</u>	We	ere cuttings o	aught dur	ing dri	illing?	Yes <u>X</u> No		
Were	_ Electrical		_Mechanica	ıl, <u>X</u>	r Geo	physical log	s recorded	on thi	s well?			
PHYSICAL (CHANGE, ET	C. 2).	THE WELL LO	OG WHICH	IS A SY	STEMATIC D	ETAILED G	EOLO	GICAL REC	CTURING OR S CORD OF THE ACE TO TOTA	TOPS AND	NG,
PERFORA	TED INTE	RVA	LS, FRACTI	URING, O	R STI	MULATING	<u>3:</u>					
5/20/2012	FRACED STA	GE 1/12	PERFED MA	RCELLUS @	11157'	-11391' W/ 15 S	HOTS. SAN	D 402,60	00#, AVG P	SI 7067, AVG R	ATE 90.3.	
5/20/2012	FRACED STA	GE 2/12	2. PERFED MA	RCELLUS @	10844	-11096' W/ 7 SF	IOTS. SANI	401,700	O#, AVG PS	I 6798, AVG RA	TE 80.7.	
5/20/2012	FRACED STA	GE 3/12	2. PERFED MA	RCELLUS @	10545	-10796' W/ 7 SF	IOTS. SANI	181,70	0#, AVG PS	I 7094, AVG RA	TE 80.5.	
5/21/2012	FRACED STA	GE 4/12	2. PERFED MA	RCELLUS @	10245	-10496' W/ 7 SF	HOTS. SANI	370,20	0# , AVG PS	SI 7302, AVG RA	TE 99.6.	
5/21/2012	FRACED STA	GE 5/12	2. PERFED MA	RCELLUS @	9945'-1	10196' W/ 7 SH	OTS. SAND	403,100	#, AVG PSI	7127, AVG RAT	E 92.5.	
5/21/2012	FRACED STA	GE 6/12	2. PERFED MA	RCELLUS @	9745'-9	9896' W/ 7 SHO	TS. SAND 3	16,800#	AVG PSI 7	687, AVG RATI	E 86.5.	
5/21/2012	FRACED STA	GE 7/12	2. PERFED MA	RCELLUS @	9345'-9	9593' W/ 7 SHO	TS. SAND 4	02,800#	, AVG PSI 7	129, AVG RATI	392.8.	
5/22/2012	FRACED STA	GE 8/12	2. PERFED MA	RCELLUS @	9045'-9	9296' W/ 7 SHO	TS. SAND	369,900#	, AVG PSI	7068, AVG RAT	E 94.3.	
5/22/2012	FRACED STA	GE 9/12	2. PERFED MA	RCELLUS @	8745'-	8996' W/ 7 SHO	TS. SAND 4	03,500#,	, AVG PSI 7	295, AVG RATI	3 93.9.	
5/22/2012	FRACED STA	GE 10/1	12. PERFED M.	ARCELLUS (@ 8445'	-8696' W/ 7 SH	OTS. SAND	370,500	#, AVG PSI	7050, AVG RAT	TE 94 .7.	
5/23/2012	FRACED STA	GE 11/1	12. PERFED M.	ARCELLUS (∂ 8145'	-8391' W/ 7 SH	OTS. SAND	401,500	#, AVG PSI	6985, AVG RAT	E 92.9.	
5/23/2012	FRACED STA	GE 12/1	12. PERFED M.	ARCELLUS (@ 7845'	-8096' W/ 7 SH	OTS. SAND	352,600	#, AVG PSI	6965, AVG RA	TE 93.3.	
FORMAT	IONS ENC	OUN'I	TERED:									
Fill	0	10	Sand/Shale	10	21	Clay	21	31	Sand/Shale	31	46	
Sand	46	90	Coal	· 90	93	Shale	93	120	Sand/Shale	120	125	
Sand	125	155	Sand/Shale	155	163	Coal	163	168	Sand/Shale	168	172	
Sand	172	430	Sand/Shale	430	455	Sand	455	576	Coal	576	579	
Sand/Shale	579	622	Sand	622	670	Sand/Shale	670	783	Shale	783	801	
Shale/Sand	801	1000	RedRock	1000	1031	Shale/Sand	1031	1080	Sand	1080	1270	
Sand/Shale	1270	1335	Sand	1335	1370	Sand/Shale	1370	1430	Lime	1430	1474	
Injun	1474	1624	Shale/Sand	1624	1646	Fifty Foot	1646	1686	Shale/Sand	1686	1886	
RedRock	1886	1995	Sand	1995	2015	Shale/Sand	2015	2104	5th Sand	2104	2125	
Shale/Sand	2125	2182	Bayard	2182	2231	Sand/Shale	2231	3084	Sand	3084	3110	
Sand/Shale	3110	3490	Sand	3490	3550	Sand/Shale	3550	3800	Benson	3800	3815	
Shale	3815	3905	Sand/Shale	3905	3950	Sand	3950	3970	Shale	3970	4000	
Shale/Sand	4000	5550										
					GAMM/	3				7		
					BAY.							

	<u>GAMMA</u>		
	BAY/		
	FORMATION		
#ALT2FHS (405950)	TOPS		47-097-03773H
	TOP	BASE	
FORMATIONS MEASURED IN TVD			
HOLE NOT LOGGED UNTIL KICKOFF POINT			•
BURKETT	6977	7020	
TULLY	7020	7058	
HAMILTON	7058	7120	·
MARCELLUS	7120		
LTD	11564		

WR-35 Rev (9-11)

State of West Virginia D

DATE:	10-2-2012	J^{I}
API#:	47-103-02236	

epartment of Environmental Protection
Office of Oil and Gas
Well Operator's Report of Well Work

arm name: Martin R Whitman Jr 1	Operator Well No.: 625599					
OCATION: Elevation: 1370'	_ Quadrangle: _\	Wileyville 7.5				
District: Center	County: Wetz	el				
Latitude: 725' Feet South of 39 Dea	, <u>42</u> Min	ı. <u>30</u> Se				
Longitude 3700° Feet West of 79 Deg	g. 40 Min	ı. <u>00 </u>	c.			
Company: Chesapeake Appalachia, L.L.C.						
Address: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.		
Oklahoma City, OK 73154-0496	20"	40'	40'	Driven		
Agent: Eric Gillespie	13 3/8"	1309'	1309'	1190 Cu. Ft.		
Inspector: Mike Underwood	9 5/8"	2719'	2719'	443 Cu. Ft.		
Date Permit Issued: 5-4-2007	5 1/2"	7780'	7780'	982 Cu. Ft.		
Date Well Work Commenced: 6-11-2007						
Date Well Work Completed: 10-26-2007						
Verbal Plugging:						
Date Permission granted on:						
Rotary Cable Rig						
Total Vertical Depth (ft): 7722' (PBTD 7,660')						
Total Measured Depth (ft): 7780'						
Fresh Water Depth (ft.): 283'						
Salt Water Depth (ft.): 2892'						
Is coal being mined in area (N/Y)?	-					
Coal Depths (ft.): 933-940', 1064'-1066'						
Void(s) encountered (N/Y) Depth(s) N						
		ļ				
OPEN FLOW DATA (If more than two producing forma	tions please inclu y zone depth (ft)		data on separate	sheet)		
Producing formation Marcellus Pa Gas: Initial open flow MCF/d Oil: Initial open		Bbl/d				
Final open flow 46° MCF/d Final open fl		bl/d				
Time of open flow between initial and final tests 12		s *Calculated				
Static rock Pressure 5,057* psig (surface pressure)	afterHou	urs		•		
Second producing formation Pay	zone depth (ft)			A. Carrier		
Gas: Initial open flow MCF/d Oil: Initial open	• • • • • • • • • • • • • • • • • • • •	Bbl/d	<.	Ga.		
Final open flow MCF/d Final open fl		bl/d	" Ly	1/		
Time of open flow between initial and final tests_	Hour	s	· (,,			
Static rock Pressure psig (surface pressure)	after Hou	urs	76.	٠ :		

all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe

Marlere Williams
Signature

that the information is true, accurate, and complete.

Were core samples taken? Yes Y No	Were cuttings caught du	ring drilling? Yes Y No
Were Electrical, Mechanical or Geophysical logs record TRIPLE COMBO DIPOLE SONIC FROM 2650'-7780	ed on this well? If yes, please list	
NOTE: IN THE AREA BELOW PUT THE FRACTURING OR STIMULATING, PHYSICAL DETAILED GEOLOGICAL RECORD OF THE COAL ENCOUNTERED BY THE WELLBORE FI	CHANGE, ETC. 2). THE WELL TOPS AND BOTTOMS OF A	LOG WHICH IS A SYSTEMATIC LL FORMATIONS, INCLUDING
Perforated Intervals, Fracturing, or Stimulating:		
(See attached)		
	· · · · · · · · · · · · · · · · · · ·	
Plug Back Details Including Plug Type and Depth(s):		
Formations Encountered: Surface:	Top Depth /	Bottom Depth
(See attached)		
		Para L
		"The same of the s

PERFORATION RECORD ATTACHMENT

Well Number and Name: 625599 Martin R Whiteman JR 1

PERFO	RATION RE	CORD				STIMULAT	TON RECOR	D		
	Interval P	erforated				Fluid		Propping Agent		Average
Date	From	To	Date	Interval	Treated	Type	Amount	Туре	Amount	Injection
10/1/2007	7,335	7,378	10/3/2007	7,335	7,378	Slk wtr	9,206	Sand	153,000	40
10/23/2009	7,422	7,422	10/23/2009	7,422	7,422	Acid	15	NA	NA	2
10/24/2009	7,324	7,406	10/24/2009	7,324	7,406	Acid	15	NA	NA	2
10/25/2009	7,224	7,286	10/25/2009	7,224	7,286	Acid	15	NA	NA	2
10/26/2009	7,124	7,124	10/26/2009	7,124	7,124	Acid	15	NA_	NA	2
								, ,,		
			1		†	,		1		
			1							
						1	İ	i		
			<u> </u>	,						
			<u> </u>			<u> </u>			1	1

Up

PILOT WELLBORE

Maximum TVD of wellbore: 7722 ft TVD @ 7780 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
SH/LS/SS	0	0	933	933
COAL	933	933	940	940
SANDY SH	940	940	1064	1064
COAL	1064	1064	1066	1066
SILTY SH	1066	1066	2364	2363
BIG LIME (LS)	2364	2363	2414	2412
BIG INJUN (SS)	2414	2412	2605	2603
SANDY SH	2605	2603	3005	3002
BEREA (SS)	3005	3002	3105	3102
SILTY SH	3105	3102	7193	7189
GENESEO (SH)	7193	7189	7221	7217
TULLY (LS)	7221	7217	7251	7246
HAMILTON (SH)	7251	7246	7334	7329
MARCELLUS (SH)	7334	7329	7379	7374
ONONDAGA	7379	7374	7421	7416
HUNTERSVILLE	7421	7416	7612	7607
ORISKANY	7612	7607	7706	7690
HELDERBERG	7706	7690	7780	7722
PILOT TD			7780	7722

WR-35 Rev (9-11)

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	10-3-2012	Mo.
API#:	47-103-02371	<i>U'</i>

Farm name: David Durig ETUX-Luck	y D 8H	Opera	Operator Well No.: 626888				
LOCATION: Elevation: 1372'		Quadi	rangle: Wileyville	7.5			
District: Center		Count	ty: Wetzel				
Latitude: 4375	Feet South of 39	Deg. 45	Min. 00	Sec.			
Longitude 14800'	Feet West of 80	Deg. 37	Min. 30	Sec.			

Chesapeake Appalachia, L.L.C. Company: Casing & Used in Left in well Cement fill P.O. Box 18496 Address: **Tubing** drilling up Cu. Ft. Oklahoma City, OK 73154-0496 20" 30' 30' Driven Eric Gillespie 1235' 1291 Cu. Ft. 13 3/8" 1235' Agent: Inspector: Bill Hendershot 9 5/8" 2677' 2677' 763 Cu. Ft. 5 1/2" 11540' 11540' 2004 Cu. Ft. Date Permit Issued: 7/28/2008 3-2-2009 Date Well Work Commenced: 8-18-2009 Date Well Work Completed: Verbal Plugging: Date Permission granted on: Rotary 🗸 Cable Rig 7286' Total Vertical Depth (ft): Total Measured Depth (ft): 11540' Fresh Water Depth (ft.): None Salt Water Depth (ft.): Is coal being mined in area (N/Y)? Coal Depths (ft.): 1141' Void(s) encountered (N/Y) Depth(s) N OPEN FLOW DATA (If more than two producing formations please include additional data on separate sheet) Producing formation Marcellus Pay zone depth (ft) 7,809'-11,311' MCF/d Oil: Initial open flow Gas: Initial open flow Bbl/d Final open flow 1,080* Final open flow 0 Bbl/d MCF/d Time of open flow between initial and final tests 120 Hours *Calculated Static rock Pressure 4,736* psig (surface pressure) after UCT P. COM Second producing formation Pay zone depth (ft) Gas: Initial open flow MCF/d Oil: Initial open flow Bbl/d Final open flow _____ Final open flow MCF/d Bbl/d Elivitor trespondent Time of open flow between initial and final tests Hours ..Jn Static rock Pressure __psig (surface pressure) after _____ Hours

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Marlow Williams
Signature

1032012 Date

Were core samples taken?	Yes	No N	Were	cuttings caught duri	ng drilling? Yes <u>Y</u>	_ No
Were Electrical, Mechanic	al or Geoph	ysical logs reco	rded on this well? I	f yes, please list		
NOTE: IN THE ARE FRACTURING OR STI DETAILED GEOLOGI COAL ENCOUNTERED	MULATIN	G, PHYSICAL CORD OF TH	L CHANGE, ETC. E TOPS AND BO	2). THE WELL LOTTOMS OF ALI	OG WHICH IS A SY L FORMATIONS, I	STEMATIC
Perforated Intervals, Fracti	ıring, or Sti	mulating:				
(See attached)						
						
Plug Back Details Including	ng Plug Typ	e and Depth(s):				
					····	
Formations Encountered: Surface:			Top Depth		Bottom I	<u>Depth</u>
(See attached)						
	, <u> </u>					
						
						
					and the tenth of any	
					- Julia	

PERFORATION RECORD ATTACHMENT

Well Number and Name: 626888 David Durig Etux-Lucky D 8H

PERFO	RATION RE	CORD				STIMULAT	ION RECOR	D		
	Interval Perforated					Fluid		Propping Agent		Average
Date	From	To	Date	Interval	Treated	Type	Amount	Туре	Amount	Injection
6/18/2009	10,809	11,311	7/3/2009	10,809	11,311	Slk wtr	10,572	Sand	585,628	89
7/3/2009	10,209	10,711	7/5/2009	10,209	10,711	Slk wtr	10,519	Sand	584,974	90
7/5/2009	9,609	10,111	7/6/2009	9,609	10,111	Sik wtr	12,953	Sand	240,402	83
7/11/2009	8,993	9,511	7/13/2009	8,993	9,511	Slk wtr	10,398	Sand	571,865	99.5
8/18/2009	8,409	8,911	8/18/2009	8,409	8,911	Sik wtr	9,678	Sand	229,434	88
8/18/2009	7,809	8,311	8/18/2009	7,809	8,311	Slk wtr	13,182	Sand	731,275	76
	·									
	-		1							
								1		
					1					[

The State of the

16.7 1 2 12.2

EnVhammer

LATERAL WELLBORE (no vertical pilot hole associated with this well)

Maximum TVD of wellbore: 7286 ft TVD @ 11540 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)
Sandy Shale	0	0	1141	1140
Pittsburgh Coal	1141	1140	1150	1149
Silty Shale	1150	1149	1740	1739
Silty Sandstone	1740	1739	1900	1899
Silty Shale	1900	1899	2230	2229
Big Lime	2230	2229	2315	2314
Big Injun	2315	2314	2570	2569
Silty Shale	2570	2569	3200	3196
Gordon	3200	3196	3222	3218
Limey Shale	3222	3218	7106	7056
GENESEO (SH)	7106	7056	7131	7075
TULLY (LS)	7131	7075	7165	7097
HAMILTON (SH)	7165	7097	7381	7190
MARCELLUS (SH)	7381	7190		
TD OF LATERAL			11540	7286

WR-35 Rev (9-11)

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

Min. 30

Sec.

API#:	47-103-02714	
DATE:	10-26-2012	Jř

Farm name: Vernon Johnson WTZ 10H Operator Well No.: 834482 Quadrangle: Littleton 7.5 LOCATION: Elevation: 1438' County: Wetzel District: Clay Deg. 45 Latitude: 1315 Feet South of 39 Min. 00 Sec.

Deg. 32

Longitude 11649

Feet West of 80

Company: Chesapeake Appalachia, L.L.C.				
Address: P.O. Box 18496	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
Oklahoma City, OK 73154-0496	20"	100'	100'	348 Cu. Ft.
Agent: Eric Gillespie	13 3/8"	1333'	1333'	1487 Cu. Ft.
Inspector: Bill Hendershot	9 5/8"	2895'	2895'	1223 Cu. Ft.
Date Permit Issued: 11-17-2011	5 1/2"	13379'	13379'	3261 Cu. Ft.
Date Well Work Commenced: 5-18-2012				
Date Well Work Completed: 7-29-2012				
Verbal Plugging:				
Date Permission granted on:				
Rotary Cable Rig				
Total Vertical Depth (ft): 7729'(cement plug @6980'-8010')				
Total Measured Depth (ft): 13379'				
Fresh Water Depth (ft.): 220'				
Salt Water Depth (ft.): None	<u></u>			
Is coal being mined in area (N/Y)? N				
Coal Depths (ft.): 1237'				
Void(s) encountered (N/Y) Depth(s) N				

OPEN FLOW DATA (If a	nore than two producing formations ple	ease include additional da	ta on separate sheet)
Producing formation N	farcellus Pay zone d	epth (ft)_8,000'-13,244'	
Gas: Initial open flow_	MCF/d Oil: Initial open flow	Bbl/d	
Final open flow 4.66	MCF/d Final open flow 0	Bbl/d	
Time of open flow b	petween initial and final tests 41	Hours *Calculated	
Static rock Pressure 498	psig (surface pressure) after	Hours	.<
Second producing form	nation Pay zone dep	oth (ft)	
Gas: Initial open flow_	MCF/d Oil: Initial open flow	Bbl/d	
Final open flow	MCF/d Final open flow	Bbl/d	1 (UV)
Time of open flow l	petween initial and final tests	Hours	100 July 100 Miles
Static rock Pressure	psig (surface pressure) after	Hours	<i>V</i> , J

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Were core samples taken? Yes	No_X W	ere cuttings caught during dri	Illing? Yes No	
Were Electrical, Mechanical or Geophys Triple Combo in vertical and MWD GR in lateral.	ical logs recorded on this well	l? If yes, please list		
NOTE: IN THE AREA BELOW FRACTURING OR STIMULATING DETAILED GEOLOGICAL RECO COAL ENCOUNTERED BY THE W	, PHYSICAL CHANGE, ET ORD OF THE TOPS AND	TC. 2). THE WELL LOG W DOTTOMS OF ALL FO	VHICH IS A SYSTE	MATIC
Perforated Intervals, Fracturing, or Stime	ılating:			
(See attached)				
Plug Back Details Including Plug Type	and Douth(s):			
Plug Back Details including Flug Type	ma Depui(s).			
		• • •		
Formations Encountered: Surface:	Top Depth		Bottom Depth	
ourtues.				
(See attached)				
	· · · · · · · · · · · · · · · · · · ·			
			SELECTION OF THE PROPERTY OF T	(* *)
				atrid.
			(Si 2)	(3

: 3

PERFORATION RECORD ATTACHMENT

Well Number and Name: 834482 Vernon Johnson WTZ 10H

PERFORATION RECORD		STIMULATION RECORD								
	Interval Perforated				Fluid		Propping Agent		Average	
Date	From	To	Date	Interval	Treated	Туре	Amount	Туре	Amount	Injection
7/1/2012	12,662	13,244	7/21/2012	12,662	13,244	Slk wtr	12,729	Sand	692,710	76
7/1/2012	11,996	12,578	7/22/2012	11,996	12,578	Slk wtr	10,712	Sand	585,260	77
7/25/2012	11,330	11,912	7/25/2012	11,330	11,912	Sik wtr	14,436	Sand	677,020	79
7/25/2012	10,659	11,244	7/26/2012	10,659	11,244	Sik wtr	12,667	Sand	425,140	78
7/27/2012	9,998	10,580	7/27/2012	9,998	10,580	Sik wtr	13,504	Sand	689,520	79.7
7/27/2012	9,332	9,914	7/28/2012	9,332	9,914	Slk wtr	12,836	Sand	690,340	80
7/28/2012	8,666	9,248	7/28/2012	8,666	9,248	Slk wtr	12,710	Sand	689,200	78
7/29/2012	8,000	8,582	7/29/2012	8,000	8,582	Slk wtr	13,562	Sand	687,920	78.7
							<u> </u>			
				•	<u> </u>		<u> </u>			
							1			
									<u> </u>	
						ļ	ļ	<u> </u>		
				_			ļ		ļ	ļ
								<u> </u>	ļ	ļ
					<u> </u>			ļ	<u> </u>	
		ļ	1							

LATERAL WELLBORE

Maximum TVD of wellbore: 7693 ft TVD @ 9813 ft MD

Formation/Lithology	Top Depth, MD (ft)	Top Depth, TVD (ft)	Bottom Depth, MD (ft)	Bottom Depth, TVD (ft)	
SS/SLTSTN	0	0	300	300	
SHALE	300	300	330	330	
SS/SLTSTN	330	330	390	390	
SS	390	390	1080	1080	
SLTSTN	1080	1080	1284	1284	
PITTSBURGH COAL	1284	1284	1290	1290	
SLTSTN	1290	1290	1710	1710	
SS/SLTSTN	1710	1710	1750	1750	
SS	1750	1750	2210	2210	
MAXTON	2210	2210	2370	2370	
SHALE	2370	2370	2430	2430	
LS	2430	2430	2498	2498	
BIG INJUN	2498	2498	2754	2754	
SHALE/SLTSTN	2754	2754	4380	4380	
SLTSTN	4380	4380	4800	4800	
SS/SLTSTN	4800	4800	4890	4890	
SLTSTN	4890	4890	5280	5280	
SHALE	5280	5280	5850	5850	
SLTSTN	5850	5850	6300	6300	
SHALE	6300	6212	7513	7374	
MIDDLESEX	7513	7374	7658	7496	
GENESEO	7658	7496	7689	7520	
TULLY	7689	7520	7725	7547	
HAMILTON	7725	7547	7892	7651	
MARCELLUS	7892	7651	8017	7710	
ONONDAGA	8017	7710	8029	7729	
TD	8029	7729			
PLUG BACK	6904	6904			
SHALE	6904	6904	7500	7363	
MIDDLESEX	7500	7363	7661	7498	
GENESEO	7661	7498	7691 [©]	7520	
TULLY	7691	7520	7730	7546	
HAMILTON	7730	7546	7958	7651	
MARCELLUS	7958	7651	13379	7658	